IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v40y2006i9p731-744.html
   My bibliography  Save this article

Bus lanes with intermittent priority: Strategy formulae and an evaluation

Author

Listed:
  • Eichler, Michael
  • Daganzo, Carlos F.

Abstract

This paper evaluates strategies for operating buses on signal-controlled arterials using special lanes that are made intermittently available to general traffic. The advantage of special bus lanes, intermittent or dedicated, is that they free buses from traffic interference; the disadvantage is that they disrupt traffic. We find that bus lanes with intermittent priority (BLIPs), unlike dedicated ones, do not significantly reduce street capacity. Intermittence, however, increases the average traffic density at which the demand is served, and as a result increases traffic delay. These delays are more than offset by the benefits to bus passengers as long as traffic demand does not exceed by much the maximum flow possible on the non-special lanes; the smaller the excess the better. BLIPs are not intended for roadways nearing or in excess of capacity. The main factors determining whether an intermittent system saves time are: the traffic saturation level; the bus frequency; the improvement in bus travel time achieved by the special lane; and the ratio of bus and car occupant flows. In some scenarios where a dedicated bus lane could not be operated, a BLIP can save to bus and car occupants together as much as 20 persons-min of travel per bus-km. The required conditions for this to happen are quite particular. Typical savings are smaller. Formulae are given.

Suggested Citation

  • Eichler, Michael & Daganzo, Carlos F., 2006. "Bus lanes with intermittent priority: Strategy formulae and an evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 731-744, November.
  • Handle: RePEc:eee:transb:v:40:y:2006:i:9:p:731-744
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(05)00110-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newell, G. F., 1998. "A moving bottleneck," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 531-537, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    2. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    3. Ramirez Ibarra, Monica & Saphores, Jean-Daniel M., 2023. "1,000 HP electric drayage trucks as a substitute for new freeway lanes construction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    4. Laval, Jorge A. & Daganzo, Carlos F., 2004. "Multi-Lane Hybrid Traffic Flow Model: Quantifying the Impacts of Lane-Changing Maneuvers on Traffic Flow," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8w70q261, Institute of Transportation Studies, UC Berkeley.
    5. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    6. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    7. Logghe, S. & Immers, L.H., 2008. "Multi-class kinematic wave theory of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 523-541, July.
    8. Daganzo, Carlos F. & Laval, Jorge A., 2005. "On the numerical treatment of moving bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 31-46, January.
    9. Laval, Jorge A., 2009. "Effects of geometric design on freeway capacity: Impacts of truck lane restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 720-728, July.
    10. Leclercq, Ludovic & Laval, Jorge A. & Chiabaut, Nicolas, 2011. "Capacity drops at merges: An endogenous model," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1302-1313.
    11. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    12. Laval, Jorge A., 2006. "A macroscopic theory of two-lane rural roads," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 937-944, December.
    13. Li, Jia & Zhang, H.M., 2013. "Modeling space–time inhomogeneities with the kinematic wave theory," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 113-125.
    14. Kai Yuan & Hong K. Lo, 2021. "Multiclass Traffic Flow Dynamics: An Endogenous Model," Transportation Science, INFORMS, vol. 55(2), pages 456-474, March.
    15. Chubo Xu & Jianxiao Ma & Xiang Tang, 2022. "A Simulation-Based Study of the Influence of Low-Speed Vehicles on Expressway Traffic Safety," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    16. Coifman, Benjamin & Ponnu, Balaji & El Asmar, Paul, 2023. "LWR and shockwave analysis - Failures under a concave fundamental diagram and unexpected induced disturbances," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    17. Leclercq, Ludovic, 2007. "Bounded acceleration close to fixed and moving bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 309-319, March.
    18. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    19. Shiomi, Yasuhiro & Yoshii, Toshio & Kitamura, Ryuichi, 2011. "Platoon-based traffic flow model for estimating breakdown probability at single-lane expressway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1314-1330.
    20. Laval, Jorge A. & Leclercq, Ludovic, 2013. "The Hamilton–Jacobi partial differential equation and the three representations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 17-30.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:40:y:2006:i:9:p:731-744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.