IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v141y2023icp274-290.html
   My bibliography  Save this article

Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study

Author

Listed:
  • Jiang, Like
  • Chen, Haibo
  • Paschalidis, Evangelos

Abstract

Connected and autonomous vehicles (CAV) have seen a rapid development over the past decade. However, wide diffusion of high level CAVs is still decades to come, and will depend on many technological, policy and public acceptance factors. Merging a traditional Bass Diffusion Model with a discrete choice model in a system dynamics approach, this study modelled CAV diffusion from 2020 to 2070 in the UK, considering mode choices of CAV private car, CAV car/ride sharing and CAV bus, their possible impacts on road network performance and sustainability, and the feedback of these impacts to CAV diffusion. Results of this study suggest that without interventions CAV diffusion will start to increase rapidly from 2035, and reach market saturation of 98% in around 2057. CAV diffusion will lead to reductions in average travel time, average travel cost, carbon emission and traffic accident. Training campaign, which prepares the general public to be ready for CAVs, is more effective in accelerating CAV diffusion than marketing campaign, which mainly targets the innovators and early adopters. Promoting shared CAVs and CAV public transport can contribute to more sustainable and more affordable mobility with CAVs, although this may lead to smaller CAV market size in terms of CAV sale, and the market size may reduce at a higher rate than sustainability enhancement.

Suggested Citation

  • Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
  • Handle: RePEc:eee:trapol:v:141:y:2023:i:c:p:274-290
    DOI: 10.1016/j.tranpol.2023.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23002093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng Liu & Run Yang & Zhigang Xu, 2019. "Public Acceptance of Fully Automated Driving: Effects of Social Trust and Risk/Benefit Perceptions," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 326-341, February.
    2. May, Anthony D. & Shepherd, Simon & Pfaffenbichler, Paul & Emberger, Günter, 2020. "The potential impacts of automated cars on urban transport: An exploratory analysis," Transport Policy, Elsevier, vol. 98(C), pages 127-138.
    3. Yue Liu & Jun Chen & Weiguang Wu & Jiao Ye, 2019. "Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    4. Jason Hawkins & Khandker Nurul Habib, 2019. "Integrated models of land use and transportation for the autonomous vehicle revolution," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 66-83, January.
    5. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    6. Markard, Jochen & Wirth, Steffen & Truffer, Bernhard, 2016. "Institutional dynamics and technology legitimacy – A framework and a case study on biogas technology," Research Policy, Elsevier, vol. 45(1), pages 330-344.
    7. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    8. Hensher, David A. & Rose, John M., 2007. "Development of commuter and non-commuter mode choice models for the assessment of new public transport infrastructure projects: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 428-443, June.
    9. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    10. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    11. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    12. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Robert Sparrow & Mark Howard, 2020. "Make way for the wealthy? Autonomous vehicles, markets in mobility, and social justice," Mobilities, Taylor & Francis Journals, vol. 15(4), pages 514-526, July.
    14. Aggelos Soteropoulos & Martin Berger & Francesco Ciari, 2019. "Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 29-49, January.
    15. Gillian Harrison & Astrid Gühnemann & Simon Shepherd, 2020. "The Business Case for a Journey Planning and Ticketing App—Comparison between a Simulation Analysis and Real-World Data," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    16. Abe, Ryosuke, 2019. "Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 94-113.
    17. Ramin Shabanpour & Ali Shamshiripour & Abolfazl Mohammadian, 2018. "Modeling adoption timing of autonomous vehicles: innovation diffusion approach," Transportation, Springer, vol. 45(6), pages 1607-1621, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Dianin & Elisa Ravazzoli & Georg Hauger, 2021. "Implications of Autonomous Vehicles for Accessibility and Transport Equity: A Framework Based on Literature," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    2. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    3. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
    4. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    5. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    6. Jiang, Like & Chen, Haibo & Chen, Zhiyang, 2022. "City readiness for connected and autonomous vehicles: A multi-stakeholder and multi-criteria analysis through analytic hierarchy process," Transport Policy, Elsevier, vol. 128(C), pages 13-24.
    7. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    8. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    9. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    10. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    11. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
    12. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    13. Simone Pettigrew & Leon Booth & Victoria Farrar & Branislava Godic & Julie Brown & Charles Karl & Jason Thompson, 2022. "Walking in the Era of Autonomous Vehicles," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    14. Mohamad Shatanawi & Mohammed Hajouj & Belal Edries & Ferenc Mészáros, 2022. "The Interrelationship between Road Pricing Acceptability and Self-Driving Vehicle Adoption: Insights from Four Countries," Sustainability, MDPI, vol. 14(19), pages 1-32, October.
    15. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    16. Félix Carreyre & Nicolas Coulombel & Jaâfar Berrada & Laurent Bouillaut, 2022. "Economic evaluation of autonomous passenger transportation services: a systematic review and meta-analysis of simulation studies," Revue d'économie industrielle, De Boeck Université, vol. 0(2), pages 89-138.
    17. Ishant Sharma & Sabyasachee Mishra, 2023. "Ranking preferences towards adopting autonomous vehicles based on peer inputs and advertisements," Transportation, Springer, vol. 50(6), pages 2139-2192, December.
    18. Eric Williams & Vivekananda Das & Andrew Fisher, 2020. "Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice," Sustainability, MDPI, vol. 12(5), pages 1-13, March.
    19. Elvik, Rune, 2020. "The demand for automated vehicles: A synthesis of willingness-to-pay surveys," Economics of Transportation, Elsevier, vol. 23(C).
    20. Huang, Yantao & Kockelman, Kara M. & Quarles, Neil, 2020. "How will self-driving vehicles affect U.S. megaregion traffic? The case of the Texas Triangle," Research in Transportation Economics, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:141:y:2023:i:c:p:274-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.