IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v163y2021ics0040162520312701.html
   My bibliography  Save this article

Forecasting the effects of autonomous vehicles on land use

Author

Listed:
  • Bridgelall, Raj
  • Stubbing, Edward

Abstract

The widespread availability of connected and autonomous vehicles (CAVs) will likely affect social change in terms of how people travel. Traditional methods of travel demand and land use modeling require vast amounts of data that could be expensive to obtain. Such models use complex software that requires trained professionals to configure and hours to run a single scenario. Alternative closed-form models that can quickly assess trends in potential CAV impact on the regional demand for shopping, entertainment, or dining land use does not exist. This research developed a closed-form model that considers the potential mode shift towards CAVs, possible changes in the propensity to travel, shopping trip avoidance from e-commerce, and greater accessibility for non-drivers. Model parameter estimation based on statistics from the greater Toronto area found that population growth from 2017 to 2050 alone could increase the demand for shopping, entertainment, or dining land use by nearly 60%. However, CAVs could double or triple that demand—implicating dynamic planning and environmental considerations.

Suggested Citation

  • Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:tefoso:v:163:y:2021:i:c:s0040162520312701
    DOI: 10.1016/j.techfore.2020.120444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162520312701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Willett Kempton, 2016. "Electric vehicles: Driving range," Nature Energy, Nature, vol. 1(9), pages 1-2, September.
    3. Melis, Kristina & Campo, Katia & Breugelmans, Els & Lamey, Lien, 2015. "The Impact of the Multi-channel Retail Mix on Online Store Choice: Does Online Experience Matter?," Journal of Retailing, Elsevier, vol. 91(2), pages 272-288.
    4. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    5. Lee, Richard J. & Sener, Ipek N. & Mokhtarian, Patricia L. & Handy, Susan L., 2017. "Relationships between the online and in-store shopping frequency of Davis, California residents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 40-52.
    6. Steven Webber & Tony Hernandez, 2016. "Big box battles: the Ontario Municipal Board and large-format retail land-use planning conflicts in the Greater Toronto Area," International Planning Studies, Taylor & Francis Journals, vol. 21(2), pages 117-131, May.
    7. Tae H. Oum & Waters, W.G. & Jong Say Yong, 1990. "A survey of recent estimates of price elasticities of demand for transport," Policy Research Working Paper Series 359, The World Bank.
    8. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    9. Aggelos Soteropoulos & Martin Berger & Francesco Ciari, 2019. "Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 29-49, January.
    10. Raman, Rewati & Roy, Uttam Kumar, 2019. "Taxonomy of urban mixed land use planning," Land Use Policy, Elsevier, vol. 88(C).
    11. Peter Cohen & Robert Hahn & Jonathan Hall & Steven Levitt & Robert Metcalfe, 2016. "Using Big Data to Estimate Consumer Surplus: The Case of Uber," NBER Working Papers 22627, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. BERTRANDIAS, Laurent & LOWE, Ben & SADIK-ROZSNYAI, Orsolya & CARRICANO, Manu, 2021. "Delegating decision-making to autonomous products: A value model emphasizing the role of well-being," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Zirar, Araz & Ali, Syed Imran & Islam, Nazrul, 2023. "Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda," Technovation, Elsevier, vol. 124(C).
    3. Alvarez León, Luis F. & Aoyama, Yuko, 2022. "Industry emergence and market capture: The rise of autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    4. Acharya, Sailesh & Mekker, Michelle, 2024. "Acceptance and demand of autonomous vehicles for long-distance recreational travel: An investigation based on a survey of visitors to US national parks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    5. Frederiksen, Marianne Harbo & Wolf, Patricia & Klotz, Ute, 2024. "Citizen visions of drone uses and impacts in 2057: Far-future insights for policy decision-makers," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    6. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    7. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    8. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    9. Bridgelall, Raj, 2023. "Forecasting market opportunities for urban and regional air mobility," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    10. Sarri, Paraskevi & Kaparias, Ioannis & Preston, John & Simmonds, David, 2023. "Using Land Use and Transportation Interaction (LUTI) models to determine land use effects from new vehicle transportation technologies; a regional scale of analysis," Transport Policy, Elsevier, vol. 135(C), pages 91-111.
    11. Leminen, Seppo & Rajahonka, Mervi & Wendelin, Robert & Westerlund, Mika & Nyström, Anna-Greta, 2022. "Autonomous vehicle solutions and their digital servitization business models," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
    2. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    3. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    4. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    5. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
    6. Simone Pettigrew & Leon Booth & Victoria Farrar & Branislava Godic & Julie Brown & Charles Karl & Jason Thompson, 2022. "Walking in the Era of Autonomous Vehicles," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    7. Félix Carreyre & Nicolas Coulombel & Jaâfar Berrada & Laurent Bouillaut, 2022. "Economic evaluation of autonomous passenger transportation services: a systematic review and meta-analysis of simulation studies," Revue d'économie industrielle, De Boeck Université, vol. 0(2), pages 89-138.
    8. Alberto Dianin & Elisa Ravazzoli & Georg Hauger, 2021. "Implications of Autonomous Vehicles for Accessibility and Transport Equity: A Framework Based on Literature," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    9. Jamil Hamadneh & Domokos Esztergár-Kiss, 2021. "The Influence of Introducing Autonomous Vehicles on Conventional Transport Modes and Travel Time," Energies, MDPI, vol. 14(14), pages 1-28, July.
    10. Guan, Jinping & Chen, Kexin & Mao, Runfei & Shamshiripour, Ali & Zhang, Xiaochun & Liang, Chen & Ben-Akiva, Moshe, 2024. "The willingness to pay for the automated vehicle subscription: Insights from a car-oriented population in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    11. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
    12. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    13. Fabio Antonialli & Sylvie Mira-Bonnardel & Julie Bulteau, 2021. "Economic Assessment of Services with Intelligent Autonomous Vehicles: EASI-AV," Post-Print hal-04369852, HAL.
    14. Saphores, Jean-Daniel & Xu, Lu, 2021. "E-shopping changes and the state of E-grocery shopping in the US - Evidence from national travel and time use surveys," Research in Transportation Economics, Elsevier, vol. 87(C).
    15. Sharma, Ishant & Mishra, Sabyasachee, 2022. "Quantifying the consumer’s dependence on different information sources on acceptance of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 179-203.
    16. Aybike Ongel & Erik Loewer & Felix Roemer & Ganesh Sethuraman & Fengqi Chang & Markus Lienkamp, 2019. "Economic Assessment of Autonomous Electric Microtransit Vehicles," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    17. Eric Williams & Vivekananda Das & Andrew Fisher, 2020. "Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice," Sustainability, MDPI, vol. 12(5), pages 1-13, March.
    18. Elvik, Rune, 2020. "The demand for automated vehicles: A synthesis of willingness-to-pay surveys," Economics of Transportation, Elsevier, vol. 23(C).
    19. Adnan, Nadia & Md Nordin, Shahrina & bin Bahruddin, Mohamad Ariff & Ali, Murad, 2018. "How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 819-836.
    20. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "A systematic literature review of the factors influencing the adoption of autonomous driving," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1065-1082, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:163:y:2021:i:c:s0040162520312701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.