IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v151y2021ics1366554521001332.html
   My bibliography  Save this article

Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route

Author

Listed:
  • Wang, Yadong
  • Wang, Shuaian

Abstract

Previous studies on liner container shipping operations usually assume identical container ships deployed in the same shipping route. However, in real operations, this assumption does not always hold considering the distinct capacities, ages, fuel efficiencies, cost structures, etc. of these ships. These distinctions significantly influence the number of containers transported, the bunker fuel consumption, and the operating cost of a shipping route. In this regard, this paper considers the joint ship deployment, sequencing, and scheduling problem for a fleet of heterogeneous vessels in a shipping route. A mixed integer programming model is developed to select the optimal ships from a set of candidate ships together with their sequences, schedules, and sailing speeds in the shipping route to minimize the total cost. A tailored solution algorithm is subsequently developed to calculate the global optimal solution. Numerical experiments demonstrate that this algorithm significantly outperforms the classical branch-and-cut algorithm in solving the model. In addition, by applying our model in a real-case shipping route, we find that the model is able to reduce the total cost by 5% compared with that considering homogeneous vessels. Finally, several managerial insights are obtained to guide the operations of a liner shipping route.

Suggested Citation

  • Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:transe:v:151:y:2021:i:c:s1366554521001332
    DOI: 10.1016/j.tre.2021.102365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521001332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    2. Ali Cheaitou & Pierre Cariou, 2019. "Greening of maritime transportation: a multi-objective optimization approach," Annals of Operations Research, Springer, vol. 273(1), pages 501-525, February.
    3. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    4. Junayed Pasha & Maxim A. Dulebenets & Masoud Kavoosi & Olumide F. Abioye & Oluwatosin Theophilus & Hui Wang & Raphael Kampmann & Weihong Guo, 2020. "Holistic tactical-level planning in liner shipping: an exact optimization approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-35, December.
    5. B. J. Powell & A .N. Perkins, 1997. "Fleet deployment optimization for liner shipping: an integer programming model," Maritime Policy & Management, Taylor & Francis Journals, vol. 24(2), pages 183-192, January.
    6. Qiang Meng & Tingsong Wang, 2010. "A chance constrained programming model for short-term liner ship fleet planning problems," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 329-346, July.
    7. Kjetil Fagerholt & Trond A. V. Johnsen & Haakon Lindstad, 2009. "Fleet deployment in liner shipping: a case study," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(5), pages 397-409, October.
    8. Wang, Yadong & Meng, Qiang & Jia, Peng, 2019. "Optimal port call adjustment for liner container shipping routes," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 107-128.
    9. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    10. Gelareh, Shahin & Meng, Qiang, 2010. "A novel modeling approach for the fleet deployment problem within a short-term planning horizon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 76-89, January.
    11. Kevin Tierney & Jan Fabian Ehmke & Ann Melissa Campbell & Daniel Müller, 2019. "Liner shipping single service design problem with arrival time service levels," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 620-652, September.
    12. Jun Xia & Kevin X. Li & Hong Ma & Zhou Xu, 2015. "Joint Planning of Fleet Deployment, Speed Optimization, and Cargo Allocation for Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 922-938, November.
    13. Yadong Wang & Qiang Meng & Haibo Kuang, 2019. "Intercontinental Liner Shipping Service Design," Transportation Science, INFORMS, vol. 53(2), pages 344-364, March.
    14. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    15. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    16. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    17. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.
    18. Sinan Gürel & Aysan Shadmand, 2019. "A heterogeneous fleet liner ship scheduling problem with port time uncertainty," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1153-1175, December.
    19. Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
    20. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    21. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.
    22. Song, Dong-Ping & Li, Dong & Drake, Paul, 2015. "Multi-objective optimization for planning liner shipping service with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 1-22.
    23. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.
    24. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    25. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    26. D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
    27. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    28. Reinhardt, Line Blander & Plum, Christian E.M. & Pisinger, David & Sigurd, Mikkel M. & Vial, Guillaume T.P., 2016. "The liner shipping berth scheduling problem with transit times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 116-128.
    29. Dulebenets, Maxim A. & Ozguven, Eren Erman, 2017. "Vessel scheduling in liner shipping: Modeling transport of perishable assets," International Journal of Production Economics, Elsevier, vol. 184(C), pages 141-156.
    30. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    31. Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
    32. Massimo Giovannini & Harilaos N. Psaraftis, 2019. "The profit maximizing liner shipping problem with flexible frequencies: logistical and environmental considerations," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 567-597, September.
    33. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    34. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yue & Feng, Qiang & Fan, Dongming & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2023. "Optimization of maritime support network with relays under uncertainty: A novel matheuristics method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Yu, Jingjing & Tang, Guolei & Song, Xiangqun, 2022. "Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    3. Lingxiang Jian & Jia Guo & Hui Ma, 2022. "Research on the Impact of Digital Innovation Driving the High-Quality Development of the Shipping Industry," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    4. Yiwei Wu & Hongyu Zhang & Fei Li & Shuaian Wang & Lu Zhen, 2023. "Optimal Selection of Multi-Fuel Engines for Ships Considering Fuel Price Uncertainty," Mathematics, MDPI, vol. 11(17), pages 1-14, August.
    5. Saša Aksentijević & Edvard Tijan & Nexhat Kapidani & Dražen Žgaljić, 2022. "Dynamic Smart Numbering of Modular Cargo Containers," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    6. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.
    7. Domenico Gattuso & Domenica Savia Pellicanò, 2023. "HUs Fleet Management in an Automated Container Port: Assessment by a Simulation Approach," Sustainability, MDPI, vol. 15(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.
    2. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    3. Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    4. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.
    5. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    6. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    7. Junayed Pasha & Maxim A. Dulebenets & Masoud Kavoosi & Olumide F. Abioye & Oluwatosin Theophilus & Hui Wang & Raphael Kampmann & Weihong Guo, 2020. "Holistic tactical-level planning in liner shipping: an exact optimization approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-35, December.
    8. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    9. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    10. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    11. Dong, Jing-Xin & Lee, Chung-Yee & Song, Dong-Ping, 2015. "Joint service capacity planning and dynamic container routing in shipping network with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 404-421.
    12. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    13. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    14. Mihaela Bukljaš & Kristijan Rogić & Vladimir Jerebić, 2022. "Distributionally Robust Model and Metaheuristic Frame for Liner Ships Fleet Deployment," Sustainability, MDPI, vol. 14(9), pages 1-18, May.
    15. Wang, Yadong & Gu, Yuyun & Wang, Tingsong & Zhang, Jun, 2022. "A risk-averse approach for joint contract selection and slot allocation in liner container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Wang, Kai & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2017. "Cruise service planning considering berth availability and decreasing marginal profit," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 1-18.
    17. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    18. Chao-Feng Gao & Zhi-Hua Hu, 2021. "Speed Optimization for Container Ship Fleet Deployment Considering Fuel Consumption," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    19. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    20. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:151:y:2021:i:c:s1366554521001332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.