IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2862.html
   My bibliography  Save this paper

Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal

Author

Listed:
  • Manuel HERRERA
  • Per J. AGRELL
  • Casiano MANRIQUE-DE-LARA-PENATE
  • Lourdes TRUJILLO

Abstract

This paper analyses the consequences of the upcoming Panama Canal expansion using a liner fleet deployment model (LFDM) applied to the container shipment routing problem. As the canal capacity will be increased in 2016 from 5000 TEUs to 13,000 TEUs vessels, new options will be offered to container liner shippers. Some earlier work has suggested impact on shipping patterns, transshipment and cost structures. We derive optimal results for a MIP implementation of the LFDM adapted to the Panama Canal problem for demand scenarios on different international container traffic routes corresponding to a range of ±17 % of the actual Canal traffic in 2014. Our results show positive effects on total costs from fleet redeployment of larger vessels to the Canal-crossing routes, leading to lowered vessel costs and higher utilization rates. The expansion is also environmentally advantageous since the fleet composition will induce lower bunker fuel consumption and thereby lower $$\hbox {CO}_2$$ CO 2 emissions. However, the total Canal costs are still predicted to be a minor proportion of the cost basis without incentives for additional or alternative Canal capacity.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Manuel HERRERA & Per J. AGRELL & Casiano MANRIQUE-DE-LARA-PENATE & Lourdes TRUJILLO, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," CORE Discussion Papers RP 2862, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2862
    Note: In : Annals of Operations Research, 253(2), 845-869, 2017
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    2. Lei Fan & William W Wilson & Denver Tolliver, 2009. "Logistical rivalries and port competition for container flows to US markets: Impacts of changes in Canada's logistics system and expansion of the Panama Canal," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 327-357, December.
    3. H B Bendall & A F Stent, 2001. "A Scheduling Model for a High Speed Containership Service: A Hub and Spoke Short-Sea Application," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 3(3), pages 262-277, September.
    4. Sambracos, E. & Paravantis, J. A. & Tarantilis, C. D. & Kiranoudis, C. T., 2004. "Dispatching of small containers via coastal freight liners: The case of the Aegean Sea," European Journal of Operational Research, Elsevier, vol. 152(2), pages 365-381, January.
    5. Krishan Rana & R. G. Vickson, 1988. "A Model and Solution Algorithm for Optimal Routing of a Time-Chartered Containership," Transportation Science, INFORMS, vol. 22(2), pages 83-95, May.
    6. Krishan Rana & R. G. Vickson, 1991. "Routing Container Ships Using Lagrangean Relaxation and Decomposition," Transportation Science, INFORMS, vol. 25(3), pages 201-214, August.
    7. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    8. B. J. Powell & A .N. Perkins, 1997. "Fleet deployment optimization for liner shipping: an integer programming model," Maritime Policy & Management, Taylor & Francis Journals, vol. 24(2), pages 183-192, January.
    9. Lei Fan & William W. Wilson & Bruce Dahl, 2012. "Impacts of new routes and ports on spatial competition for containerized imports into the United States," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(5), pages 479-501, September.
    10. Ali Cheaitou & Pierre Cariou, 2012. "Liner shipping service optimisation with reefer containers capacity: an application to northern Europe--South America trade," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(6), pages 589-602, November.
    11. Christos A. Kontovas & Harilaos N. Psaraftis, 2011. "The link between economy and environment in the post-crisis era: lessons learned from slow steaming," International Journal of Decision Sciences, Risk and Management, Inderscience Enterprises Ltd, vol. 3(3/4), pages 311-326.
    12. Kjetil Fagerholt & Trond A. V. Johnsen & Haakon Lindstad, 2009. "Fleet deployment in liner shipping: a case study," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(5), pages 397-409, October.
    13. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    14. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    15. Kjetil Fagerholt *, 2004. "Designing optimal routes in a liner shipping problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(4), pages 259-268, October.
    16. Meng, Qiang & Wang, Shuaian, 2011. "Optimal operating strategy for a long-haul liner service route," European Journal of Operational Research, Elsevier, vol. 215(1), pages 105-114, November.
    17. Richa Agarwal & Özlem Ergun, 2010. "Network Design and Allocation Mechanisms for Carrier Alliances in Liner Shipping," Operations Research, INFORMS, vol. 58(6), pages 1726-1742, December.
    18. Fan, Lei & Wilson, William W. & Tolliver, Denver, 2010. "Optimal network flows for containerized imports to the United States," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 735-749, September.
    19. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    20. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    21. Xinxin Liu & Heng-Qing Ye & Xue-Ming Yuan, 2011. "Tactical planning models for managing container flow and ship deployment," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(5), pages 487-508, September.
    22. Karlaftis, Matthew G. & Kepaptsoglou, Konstantinos & Sambracos, Evangelos, 2009. "Containership routing with time deadlines and simultaneous deliveries and pick-ups," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 210-221, January.
    23. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    24. Wang, Shuaian & Meng, Qiang & Bell, Michael G.H., 2013. "Liner ship route capacity utilization estimation with a bounded polyhedral container shipment demand pattern," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 57-76.
    25. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    26. M. C. Moura O & M. V. Pato & A. C. Paixa O, 2002. "Ship assignment with hub and spoke constraints," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(2), pages 135-150, April.
    27. Fan, Lei & Wilson, William W. & Dahl, Bruce, 2012. "Congestion, port expansion and spatial competition for US container imports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1121-1136.
    28. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    29. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2862. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: http://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.