IDEAS home Printed from
   My bibliography  Save this article

Ship Scheduling and Network Design for Cargo Routing in Liner Shipping


  • Richa Agarwal

    () (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Özlem Ergun

    () (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)


Acommon problem faced by carriers in liner shipping is the design of their service network. Given a set of demands to be transported and a set of ports, a carrier wants to design service routes for its ships as efficiently as possible, using the underlying facilities. Furthermore, the profitability of the service routes designed depends on the paths chosen to ship the cargo. We present an integrated model, a mixed-integer linear program, to solve the ship-scheduling and the cargo-routing problems, simultaneously. The proposed model incorporates relevant constraints, such as the weekly frequency constraint on the operated routes, and emerging trends, such as the transshipment of cargo between two or more service routes. To solve the mixed-integer program, we propose algorithms that exploit the separability of the problem. More specifically, a greedy heuristic, a column generation-based algorithm, and a two-phase Benders decomposition-based algorithm are developed, and their computational efficiency in terms of the solution quality and the computational time taken is discussed. An efficient iterative search algorithm is proposed to generate schedules for ships. Computational experiments are performed on randomly generated instances simulating real life with up to 20 ports and 100 ships. Our results indicate high percentage utilization of ships' capacities and a significant number of transshipments in the final solution.

Suggested Citation

  • Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
  • Handle: RePEc:inm:ortrsc:v:42:y:2008:i:2:p:175-196
    DOI: 10.1287/trsc.1070.0205

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Marielle Christiansen & Bjorn Nygreen, 1998. "A method for solving ship routing problemswith inventory constraints," Annals of Operations Research, Springer, vol. 81(0), pages 357-378, June.
    2. Raymond K. Cheung & Chuen-Yih Chen, 1998. "A Two-Stage Stochastic Network Model and Solution Methods for the Dynamic Empty Container Allocation Problem," Transportation Science, INFORMS, vol. 32(2), pages 142-162, May.
    3. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    4. Dong-Wook Song & Photis M. Panayides, 2002. "A conceptual application of cooperative game theory to liner shipping strategic alliances," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(3), pages 285-301.
    5. Krishan Rana & R. G. Vickson, 1991. "Routing Container Ships Using Lagrangean Relaxation and Decomposition," Transportation Science, INFORMS, vol. 25(3), pages 201-214, August.
    6. H. B. Bendall & A. F. Stent, 1999. "Longhaul feeder services in an era of changing technology: an Asia-Pacific perspective," Maritime Policy & Management, Taylor & Francis Journals, vol. 26(2), pages 145-159, April.
    7. Russ J. Vander Wiel & Nikolaos V. Sahinidis, 1996. "An exact solution approach for the time‐dependent traveling‐salesman problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 797-820, September.
    8. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2000. "A Benders Decomposition Approach for the Locomotive and Car Assignment Problem," Transportation Science, INFORMS, vol. 34(2), pages 133-149, May.
    9. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos & Liu, Miaojia, 2006. "The economic viability of container mega-ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(1), pages 21-41, January.
    10. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    11. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    12. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    13. Ronen, David, 1983. "Cargo ships routing and scheduling: Survey of models and problems," European Journal of Operational Research, Elsevier, vol. 12(2), pages 119-126, February.
    14. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:42:y:2008:i:2:p:175-196. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.