IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v195y2025ics0965856425000783.html
   My bibliography  Save this article

Optimizing battery-swapping systems management for electric micro-mobility: A reinforcement learning approach

Author

Listed:
  • Zhang, Fan
  • Lv, Huitao
  • Liu, Yang
  • Yang, Ying
  • Wong, Melvin
  • Qu, Xiaobo

Abstract

As electric micro-mobility vehicles (EMVs) such as e-bikes and e-scooters increasingly meet daily commuting and delivery needs, battery swapping services have become a convenient charging method. However, unordered battery swapping disrupts user experience and operational efficiency at battery swapping stations (BSSs). Additionally, the mismatch between battery-swapping demand and available batteries leads to idle batteries and resource waste. Therefore, it is crucial to provide organized battery-swapping recommendation services while also channeling stored energy from idle batteries back to the grid. We model the operation of EMVs and battery-swapping stations (BSSs) as a Partially Observable Markov Decision Process (POMDP), where each BSS acts as an agent interacting with the environment and other stations. We introduce a multi-agent hierarchical reinforcement learning model to address the asynchronous nature of swapping recommendations and charging-discharging actions. Our model aims to minimize both the total swapping time and the operational costs of BSSs. Through numerical studies using EMV battery-swapping demand data from Nanjing, we demonstrate the model’s effectiveness in reducing detour and queuing times, improving swapping success rates, and balancing service loads. The proposed model and algorithm show strong generalization capabilities across different operational environments, indicating their potential for broader application in optimizing EMV BSS management.

Suggested Citation

  • Zhang, Fan & Lv, Huitao & Liu, Yang & Yang, Ying & Wong, Melvin & Qu, Xiaobo, 2025. "Optimizing battery-swapping systems management for electric micro-mobility: A reinforcement learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transa:v:195:y:2025:i:c:s0965856425000783
    DOI: 10.1016/j.tra.2025.104450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856425000783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2025.104450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Amiri, Saeed Salimi & Jadid, Shahram & Saboori, Hedayat, 2018. "Multi-objective optimum charging management of electric vehicles through battery swapping stations," Energy, Elsevier, vol. 165(PB), pages 549-562.
    2. Wu, Chuantao & Lin, Xiangning & Sui, Quan & Wang, Zhixun & Feng, Zhongnan & Li, Zhengtian, 2021. "Two-stage self-scheduling of battery swapping station in day-ahead energy and frequency regulation markets," Applied Energy, Elsevier, vol. 283(C).
    3. Shi, Ziyi & Xu, Meng & Song, Yancun & Zhu, Zheng, 2024. "Multi-Platform dynamic game and operation of hybrid Bike-Sharing systems based on reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    4. Yang, Jie & Liu, Wei & Ma, Kai & Yue, Zhiyuan & Zhu, Anhu & Guo, Shiliang, 2023. "An optimal battery allocation model for battery swapping station of electric vehicles," Energy, Elsevier, vol. 272(C).
    5. Zhang, Fan & Lv, Huitao & Kuai, Chenchen & Feng, Tao, 2025. "The battery-swapping revolution: Exploring user preferences in electric micro-mobility sector," Transportation Research Part A: Policy and Practice, Elsevier, vol. 194(C).
    6. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    7. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    8. Zhang, Fan & Lv, Huitao & Xing, Qiang & Ji, Yanjie, 2024. "Deployment of battery-swapping stations: Integrating travel chain simulation and multi-objective optimization for delivery electric micromobility vehicles," Energy, Elsevier, vol. 290(C).
    9. Fan, Zhang & Yanjie, Ji & Huitao, Lv & Yuqian, Zhang & Blythe, Phil & Jialiang, Fan, 2022. "Travel satisfaction of delivery electric two-wheeler riders: Evidence from Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 253-266.
    10. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    11. Zhang, Shuo & Li, Xinxin & Li, Yingzi & Zheng, Yidan & Liu, Jie, 2023. "A green-fitting dispatching model of station cluster for battery swapping under charging-discharging mode," Energy, Elsevier, vol. 276(C).
    12. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    13. Adler, Jonathan D. & Mirchandani, Pitu B., 2014. "Online routing and battery reservations for electric vehicles with swappable batteries," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 285-302.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    2. Hao, Xu & Cao, Minjie & Li, Liguo & Zhang, Sai & Meng, Xianming & Liu, Bo & Wang, Hewu, 2025. "A two-layer programming for highway heavy-duty truck battery swapping stations," Energy, Elsevier, vol. 321(C).
    3. Zhang, Fan & Lv, Huitao & Kuai, Chenchen, 2025. "Integrating user preferences and demand uncertainty in electric micro-mobility battery-swapping station planning: A data-driven three-stage model," Applied Energy, Elsevier, vol. 389(C).
    4. Liang, Yanni & Cai, Hua & Zou, Guilin, 2021. "Configuration and system operation for battery swapping stations in Beijing," Energy, Elsevier, vol. 214(C).
    5. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    6. Xu, Hairun & Zhang, Ao & Wang, Qingle & Hu, Yang & Fang, Fang & Cheng, Long, 2025. "Quantum Reinforcement Learning for real-time optimization in Electric Vehicle charging systems," Applied Energy, Elsevier, vol. 383(C).
    7. Yongzhong Wu & Siyi Zhuge & Guoxin Han & Wei Xie, 2022. "Economics of Battery Swapping for Electric Vehicles—Simulation-Based Analysis," Energies, MDPI, vol. 15(5), pages 1-18, February.
    8. Lingshu Zhong & Mingyang Pei, 2020. "Optimal Design for a Shared Swap Charging System Considering the Electric Vehicle Battery Charging Rate," Energies, MDPI, vol. 13(5), pages 1-16, March.
    9. Zhang, Shuo & Li, Xinxin & Li, Yingzi & Zheng, Yidan & Liu, Jie, 2023. "A green-fitting dispatching model of station cluster for battery swapping under charging-discharging mode," Energy, Elsevier, vol. 276(C).
    10. Ke Liu & Hui He & Xiang Liao & Fuyi Zou & Wei Huang & Chaoshun Li, 2025. "Optimization of Renewable Energy Sharing for Electric Vehicle Integrated Energy Stations and High-Rise Buildings Considering Economic and Environmental Factors," Sustainability, MDPI, vol. 17(7), pages 1-33, April.
    11. Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
    12. Yang, Jie & Liu, Wei & Ma, Kai & Yue, Zhiyuan & Zhu, Anhu & Guo, Shiliang, 2023. "An optimal battery allocation model for battery swapping station of electric vehicles," Energy, Elsevier, vol. 272(C).
    13. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    14. Wang, Yang & Lai, Kexing & Chen, Fengyun & Li, Zhengming & Hu, Chunhua, 2019. "Shadow price based co-ordination methods of microgrids and battery swapping stations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Chen, Xinjiang & Yang, Yu & Wang, Jianxiao & Song, Jie & He, Guannan, 2023. "Battery valuation and management for battery swapping station," Energy, Elsevier, vol. 279(C).
    16. Zhao, Zhonghao & Lee, Carman K.M. & Yan, Xiaoyuan & Wang, Haonan, 2024. "Reinforcement learning for electric vehicle charging scheduling: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    17. Wang, Ziqi & Hou, Sizu, 2023. "A real-time strategy for vehicle-to-station recommendation in battery swapping mode," Energy, Elsevier, vol. 272(C).
    18. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    19. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    20. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:195:y:2025:i:c:s0965856425000783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.