A two-layer programming for highway heavy-duty truck battery swapping stations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135461
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Adu-Gyamfi, Gibbson & Song, Huaming & Obuobi, Bright & Nketiah, Emmanuel & Wang, Hong & Cudjoe, Dan, 2022. "Who will adopt? Investigating the adoption intention for battery swap technology for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Amiri, Saeed Salimi & Jadid, Shahram & Saboori, Hedayat, 2018. "Multi-objective optimum charging management of electric vehicles through battery swapping stations," Energy, Elsevier, vol. 165(PB), pages 549-562.
- Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
- Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
- Zhang, Fan & Lv, Huitao & Xing, Qiang & Ji, Yanjie, 2024. "Deployment of battery-swapping stations: Integrating travel chain simulation and multi-objective optimization for delivery electric micromobility vehicles," Energy, Elsevier, vol. 290(C).
- Hao, Xu & Ou, Shiqi & Lin, Zhenhong & He, Xin & Bouchard, Jessey & Wang, Hewu & Li, Liguo, 2022. "Evaluating the current perceived cost of ownership for buses and trucks in China," Energy, Elsevier, vol. 254(PA).
- Wei Qi & Yuli Zhang & Ningwei Zhang, 2023. "Scaling Up Electric-Vehicle Battery Swapping Services in Cities: A Joint Location and Repairable-Inventory Model," Management Science, INFORMS, vol. 69(11), pages 6855-6875, November.
- Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Fan & Lv, Huitao & Kuai, Chenchen, 2025. "Integrating user preferences and demand uncertainty in electric micro-mobility battery-swapping station planning: A data-driven three-stage model," Applied Energy, Elsevier, vol. 389(C).
- Yang, Jie & Liu, Wei & Ma, Kai & Yue, Zhiyuan & Zhu, Anhu & Guo, Shiliang, 2023. "An optimal battery allocation model for battery swapping station of electric vehicles," Energy, Elsevier, vol. 272(C).
- Zhang, Fan & Lv, Huitao & Liu, Yang & Yang, Ying & Wong, Melvin & Qu, Xiaobo, 2025. "Optimizing battery-swapping systems management for electric micro-mobility: A reinforcement learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 195(C).
- Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2024. "When should capital-constrained swap service providers partner with battery lessors?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
- Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
- Yongzhong Wu & Siyi Zhuge & Guoxin Han & Wei Xie, 2022. "Economics of Battery Swapping for Electric Vehicles—Simulation-Based Analysis," Energies, MDPI, vol. 15(5), pages 1-18, February.
- Zhang, Fan & Lv, Huitao & Kuai, Chenchen & Feng, Tao, 2025. "The battery-swapping revolution: Exploring user preferences in electric micro-mobility sector," Transportation Research Part A: Policy and Practice, Elsevier, vol. 194(C).
- Liang, Yanni & Cai, Hua & Zou, Guilin, 2021. "Configuration and system operation for battery swapping stations in Beijing," Energy, Elsevier, vol. 214(C).
- Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
- Wang, Yang & Lai, Kexing & Chen, Fengyun & Li, Zhengming & Hu, Chunhua, 2019. "Shadow price based co-ordination methods of microgrids and battery swapping stations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
- Bauer, Johannes & Letmathe, Peter & Woeste, Richard, 2025. "Total cost of ownership for battery electric vehicles: The role of energy prices," Applied Energy, Elsevier, vol. 389(C).
- Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
- Schulz, Arne & Boysen, Nils & Briskorn, Dirk, 2024. "Centrally-chosen versus user-selected swaps: How the selection of swapping stations impacts standby battery inventories," European Journal of Operational Research, Elsevier, vol. 319(3), pages 726-738.
- Zhang, Boqun & Wang, Yuanfeng & Pan, Lei & Guo, Xiaohui & Liu, Yinshan & Shi, Chengcheng & Xue, Shaoqin & Wang, Liping & Chang, Xinlei & Fan, Lei, 2025. "Net zero carbon park planning framework: Methodology, application, and economic feasibility analysis," Energy, Elsevier, vol. 325(C).
- Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
- Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
- Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
- Lumbumba Taty-Etienne Nyamayoka & Lesedi Masisi & David Dorrell & Shuo Wang, 2025. "Techno-Economic Feasibility and Optimal Design Approach of Grid-Connected Hybrid Power Generation Systems for Electric Vehicle Battery Swapping Station," Energies, MDPI, vol. 18(5), pages 1-30, March.
- Faraji, Hossien & Nosratabadi, Seyyed Mostafa & Hemmati, Reza, 2022. "AC unbalanced and DC load management in multi-bus residential microgrid integrated with hybrid capacity resources," Energy, Elsevier, vol. 252(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s036054422501103x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.