Quantum Reinforcement Learning for real-time optimization in Electric Vehicle charging systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2025.125279
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
- Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
- Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Panagiotis Michailidis & Iakovos Michailidis & Elias Kosmatopoulos, 2025. "Reinforcement Learning for Electric Vehicle Charging Management: Theory and Applications," Energies, MDPI, vol. 18(19), pages 1-50, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Su, Chutian & Wang, Yi & Strbac, Goran, 2025. "Coordinated electric vehicles dispatch for multi-service provisions: A comprehensive review of modelling and coordination approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 223(C).
- Yang, Meng & Chen, Yue & Huang, Shihan & Chen, Laijun, 2025. "Recent advances in coordination and optimization of power-transportation systems: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 220(C).
- Wang, Yi & Qiu, Dawei & He, Yinglong & Zhou, Quan & Strbac, Goran, 2023. "Multi-agent reinforcement learning for electric vehicle decarbonized routing and scheduling," Energy, Elsevier, vol. 284(C).
- Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
- Zhaojie Wang & Feifeng Zheng & Ming Liu, 2025. "Charging Scheduling of Electric Vehicles Considering Uncertain Arrival Times and Time-of-Use Price," Sustainability, MDPI, vol. 17(3), pages 1-22, January.
- Panagiotis Michailidis & Iakovos Michailidis & Elias Kosmatopoulos, 2025. "Reinforcement Learning for Electric Vehicle Charging Management: Theory and Applications," Energies, MDPI, vol. 18(19), pages 1-50, October.
- Li, Yujing & Zhang, Zhisheng & Xing, Qiang, 2025. "Real-time online charging control of electric vehicle charging station based on a multi-agent deep reinforcement learning," Energy, Elsevier, vol. 319(C).
- Zhang, Fan & Lv, Huitao & Liu, Yang & Yang, Ying & Wong, Melvin & Qu, Xiaobo, 2025. "Optimizing battery-swapping systems management for electric micro-mobility: A reinforcement learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 195(C).
- Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
- Zhao, Zhonghao & Lee, Carman K.M. & Yan, Xiaoyuan & Wang, Haonan, 2024. "Reinforcement learning for electric vehicle charging scheduling: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
- Song, Ge & Xie, Hongbin & Zhang, Jingyuan & Fu, Hongdi & Shi, Zhuoran & Feng, Defan & Song, Xuan & Zhang, Haoran, 2025. "Long-term efficient energy management for multi-station collaborative electric vehicle charging: A transformer-based multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 397(C).
- Chen, Guibin & Yang, Lun & Cao, Xiaoyu, 2025. "A deep reinforcement learning-based charging scheduling approach with augmented Lagrangian for electric vehicles," Applied Energy, Elsevier, vol. 378(PA).
- Lin, Mingqiang & Zhong, Ming & Meng, Jinhao & Wang, Wei & Wu, Ji, 2025. "EV charging scheduling under limited charging constraints by an improve proximal policy optimization algorithm," Energy, Elsevier, vol. 333(C).
- Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
- Cheng, Xiu & Li, Wenbo & Yang, Jiameng & Zhang, Linling, 2023. "How convenience and informational tools shape waste separation behavior: A social network approach," Resources Policy, Elsevier, vol. 86(PB).
- Cui, Jingshi & Cao, Yi & Wang, Bo & Wu, Jiaman, 2025. "Multi-stage adaptive expansion of EV charging stations considering impacts from the transportation network and power grid," Applied Energy, Elsevier, vol. 386(C).
- Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
- Jeong-Un Yu & Kyu-Sang Cho & Sung-Won Park & Sung-Yong Son, 2024. "Digital Twin System Framework and Implementation for Grid-Integrated Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-17, December.
- Maksymilian MÄ…dziel, 2024. "Energy Modeling for Electric Vehicles Based on Real Driving Cycles: An Artificial Intelligence Approach for Microscale Analyses," Energies, MDPI, vol. 17(5), pages 1-22, February.
- Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000091. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925000091.html