IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924020890.html
   My bibliography  Save this article

A deep reinforcement learning-based charging scheduling approach with augmented Lagrangian for electric vehicles

Author

Listed:
  • Chen, Guibin
  • Yang, Lun
  • Cao, Xiaoyu

Abstract

The adoption of electric vehicles (EVs) is increasingly recognized as a promising solution to decarbonization, thereby large scales of EVs are integrated into transportation and power systems in recent years. The transportation and power systems' operation states largely influence EVs' patterns, introducing uncertainties into EVs' driving patterns and energy demand. Such uncertainties make it a challenge to optimize the operations of charging stations, which provide both charging and electric grid services such as demand responses. To handle this dilemma, this paper models the chargers' operation decisions as a constrained Markov decision process (CMDP). By synergistically combining the augmented Lagrangian method and soft actor-critic algorithm, a novel safe off-policy reinforcement learning (RL) approach is proposed in this paper to solve the CMDP. The actor-network is updated in a policy gradient manner with the Lagrangian value function. A double-critics network is adopted to estimate the action-value function to avoid overestimation bias synchronously. The proposed algorithm does not require a strong convexity guarantee of examined problems and is sample efficient. Comprehensive numerical experiments with real-world electricity prices demonstrate that our proposed algorithm can achieve high solution optimality and constraint compliance.

Suggested Citation

  • Chen, Guibin & Yang, Lun & Cao, Xiaoyu, 2025. "A deep reinforcement learning-based charging scheduling approach with augmented Lagrangian for electric vehicles," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020890
    DOI: 10.1016/j.apenergy.2024.124706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
    2. Dorokhova, Marina & Martinson, Yann & Ballif, Christophe & Wyrsch, Nicolas, 2021. "Deep reinforcement learning control of electric vehicle charging in the presence of photovoltaic generation," Applied Energy, Elsevier, vol. 301(C).
    3. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    4. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    5. Kreft, Markus & Brudermueller, Tobias & Fleisch, Elgar & Staake, Thorsten, 2024. "Predictability of electric vehicle charging: Explaining extensive user behavior-specific heterogeneity," Applied Energy, Elsevier, vol. 370(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
    2. Zhao, Zhonghao & Lee, Carman K.M. & Yan, Xiaoyuan & Wang, Haonan, 2024. "Reinforcement learning for electric vehicle charging scheduling: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    3. Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
    4. Zhaojie Wang & Feifeng Zheng & Ming Liu, 2025. "Charging Scheduling of Electric Vehicles Considering Uncertain Arrival Times and Time-of-Use Price," Sustainability, MDPI, vol. 17(3), pages 1-22, January.
    5. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    6. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    7. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    9. Samuel M. Muhindo & Roland P. Malhamé & Geza Joos, 2021. "A Novel Mean Field Game-Based Strategy for Charging Electric Vehicles in Solar Powered Parking Lots," Energies, MDPI, vol. 14(24), pages 1-21, December.
    10. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    11. Saeed Alyami, 2024. "Ensuring Sustainable Grid Stability through Effective EV Charging Management: A Time and Energy-Based Approach," Sustainability, MDPI, vol. 16(14), pages 1-15, July.
    12. Cheng, Xiu & Li, Wenbo & Yang, Jiameng & Zhang, Linling, 2023. "How convenience and informational tools shape waste separation behavior: A social network approach," Resources Policy, Elsevier, vol. 86(PB).
    13. Jiao, Feixiang & Zou, Yuan & Zhou, Yi & Zhang, Yanyu & Zhang, Xibeng, 2023. "Energy management for regional microgrids considering energy transmission of electric vehicles between microgrids," Energy, Elsevier, vol. 283(C).
    14. Liu, Junling & Li, Mengyue & Xue, Liya & Kobashi, Takuro, 2022. "A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level," Renewable Energy, Elsevier, vol. 200(C), pages 647-657.
    15. Aree Wangsupphaphol & Surachai Chaitusaney, 2022. "Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    16. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    17. Maksymilian Mądziel, 2024. "Energy Modeling for Electric Vehicles Based on Real Driving Cycles: An Artificial Intelligence Approach for Microscale Analyses," Energies, MDPI, vol. 17(5), pages 1-22, February.
    18. Soobok Yoon & Roger Dargaville, 2024. "The Optimal Infrastructure Design for Grid-to-Vehicle (G2V) Service: A Case Study Based on the Monash Microgrid," Energies, MDPI, vol. 17(10), pages 1-26, May.
    19. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    20. Haihong Bian & Quance Ren & Zhengyang Guo & Chengang Zhou & Zhiyuan Zhang & Ximeng Wang, 2024. "Predictive Model for EV Charging Load Incorporating Multimodal Travel Behavior and Microscopic Traffic Simulation," Energies, MDPI, vol. 17(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.