IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v155y2024icp51-66.html
   My bibliography  Save this article

The optimal momentum of population growth and decline

Author

Listed:
  • Feichtinger, Gustav
  • Wrzaczek, Stefan

Abstract

About 50 years ago, Keyfitz (1971) asked how much further a growing human population would increase if its fertility rate were immediately to be reduced to replacement level and remain there forever. The reason for demographic momentum is an age–structure inertia due to relatively many potential parents because of past high fertility. Although nobody expects such a miraculous reduction in reproductive behavior, a gradual decline in fertility in rapidly growing populations seems inevitable. As any delay in fertility decline to a stationary level leads to an increase in the momentum, it makes sense to think about the timing and the quantum of the reduction in reproduction. More specifically, we consider an intertemporal trade-off between costly pro- and anti-natalistic measures and the demographic momentum at the end of the planning period. This paper uses the McKendrick–von Foerster partial differential equation of age–structured population dynamics to study a sketched problem in a distributed parameter control framework. Among the results obtained by applying an appropriate extension of Pontryagin’s Maximum Principle are the following: (i) monotony of adaptation efforts to net reproduction rate and convex decrease/concave increase (if initial net reproduction rate exceeds 1/is below 1); and (ii) oscillating efforts and reproduction rate if, additionally, the size of the total population does not deviate from a fixed level.

Suggested Citation

  • Feichtinger, Gustav & Wrzaczek, Stefan, 2024. "The optimal momentum of population growth and decline," Theoretical Population Biology, Elsevier, vol. 155(C), pages 51-66.
  • Handle: RePEc:eee:thpobi:v:155:y:2024:i:c:p:51-66
    DOI: 10.1016/j.tpb.2023.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580923000813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2023.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:155:y:2024:i:c:p:51-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.