IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

The solution of time-dependent population models

Listed author(s):
  • Nan Li
  • Shripad Tuljapurkar
Registered author(s):

    We analyze the dynamics of age-structured population renewal when vital rates make a transition in a finite time interval from arbitrary initial values to any specified final values. The general solution to the renewal equation in such cases is obtained. This solution describes the birth sequence explicitly, and also leads to a general formula for population momentum. We show that the duration of the transition determines the complexity of the solution for the birth sequence. For transitions that are completed in a time smaller than the maximum age of reproduction, we show that the classical Lotka solution found in every textbook also applies, with a small modification, to the time-dependent case. Our results substantially extend previous work that has often focused on instantaneous transitions or on slow and infinitely persistent change in vital rates.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Mathematical Population Studies.

    Volume (Year): 7 (2000)
    Issue (Month): 4 ()
    Pages: 311-329

    in new window

    Handle: RePEc:taf:mpopst:v:7:y:2000:i:4:p:311-329
    DOI: 10.1080/08898480009525464
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:mpopst:v:7:y:2000:i:4:p:311-329. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.