IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v66y2023icp189-199.html
   My bibliography  Save this article

What causes dynamic change of green technology progress: Convergence analysis based on industrial restructuring and environmental regulation

Author

Listed:
  • Tian, Ying
  • Pang, Jun

Abstract

Using 57 city-level panel data of Yellow River Economic Belt from 2004 to 2018, this paper investigates the effect of industrial restructuring and environmental regulation on dynamic change of green technology progress (GTP) by convergence models. Industrial restructuring is divided into rationalization and advancement industrial structure. Concretely,δconvergence results present that GTP values of different cities do not converge to steady state, but absoluteβconvergence results show that GTP growth rate of different cities will reach to a certain steady-level. In addition, the estimation results verify the existence of GTP conditionalβconvergence. Rationalization industrial structure, advancement industrial structure, and environmental regulation respectively have significantly positive effect on GTP, but the positive effects of rationalization and advancement industrial structure reduce with the increase of environmental regulation. Moreover, fiscal revenue decentralization and fiscal expenditure decentralization are important transmission channels through which industrial restructuring and environmental regulation affect GTP.

Suggested Citation

  • Tian, Ying & Pang, Jun, 2023. "What causes dynamic change of green technology progress: Convergence analysis based on industrial restructuring and environmental regulation," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 189-199.
  • Handle: RePEc:eee:streco:v:66:y:2023:i:c:p:189-199
    DOI: 10.1016/j.strueco.2023.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0954349X2300067X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.strueco.2023.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Boqiang & Zhu, Junpeng, 2021. "Impact of China's new-type urbanization on energy intensity: A city-level analysis," Energy Economics, Elsevier, vol. 99(C).
    2. Yu, Binbin, 2022. "The Impact of the Internet on Industrial Green Productivity: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Lee G. Branstetter & Matej Drev & Namho Kwon, 2019. "Get with the Program: Software-Driven Innovation in Traditional Manufacturing," Management Science, INFORMS, vol. 65(2), pages 541-558, February.
    4. Xie, Ronghui & Teo, Thompson S.H., 2022. "Green technology innovation, environmental externality, and the cleaner upgrading of industrial structure in China — Considering the moderating effect of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    5. Su, Yi & Fan, Qi-ming, 2022. "Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of China's provinces," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    6. Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    7. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    8. Turken, Nazli & Carrillo, Janice & Verter, Vedat, 2020. "Strategic supply chain decisions under environmental regulations: When to invest in end-of-pipe and green technology," European Journal of Operational Research, Elsevier, vol. 283(2), pages 601-613.
    9. Li, Hui & Usman, Nazar & Coulibay, Megnoro Hamed & Phiri, Ruth & Tang, Xiaoying, 2022. "Does the resources curse hypothesis exist in China? What is the dynamic role of fiscal decentralization, economic policy uncertainty, and technology innovation for sustainable financial development?," Resources Policy, Elsevier, vol. 79(C).
    10. Ge, Tao & Cai, Xuesen & Song, Xiaowei, 2022. "How does renewable energy technology innovation affect the upgrading of industrial structure? The moderating effect of green finance," Renewable Energy, Elsevier, vol. 197(C), pages 1106-1114.
    11. Song, Malin & Du, Juntao & Tan, Kim Hua, 2018. "Impact of fiscal decentralization on green total factor productivity," International Journal of Production Economics, Elsevier, vol. 205(C), pages 359-367.
    12. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    13. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    14. Ke-Liang Wang & Shuang He & Fu-Qin Zhang, 2021. "Relationship between FDI, fiscal expenditure and green total-factor productivity in China: From the perspective of spatial spillover," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-28, April.
    15. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    16. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    17. Gefu Liang & Dajia Yu & Lifei Ke, 2021. "An Empirical Study on Dynamic Evolution of Industrial Structure and Green Economic Growth—Based on Data from China’s Underdeveloped Areas," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    18. Runde Gu & Chunfa Li & Dongdong Li & Yangyang Yang & Shan Gu, 2022. "The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    19. Kerui Du, 2017. "Econometric convergence test and club clustering using Stata," Stata Journal, StataCorp LP, vol. 17(4), pages 882-900, December.
    20. Jingcheng Li & Menggang Li, 2022. "Research of Carbon Emission Reduction Potentials in the Yellow River Basin, Based on Cluster Analysis and the Logarithmic Mean Divisia Index (LMDI) Method," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    21. Sun, Huaping & Kporsu, Anthony Kwaku & Taghizadeh-Hesary, Farhad & Edziah, Bless Kofi, 2020. "Estimating environmental efficiency and convergence: 1980 to 2016," Energy, Elsevier, vol. 208(C).
    22. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    23. Zhu, Xuehong & Chen, Ying & Feng, Chao, 2018. "Green total factor productivity of China's mining and quarrying industry: A global data envelopment analysis," Resources Policy, Elsevier, vol. 57(C), pages 1-9.
    24. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    25. Feng, Suling & Zhang, Rong & Li, Guoxiang, 2022. "Environmental decentralization, digital finance and green technology innovation," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 70-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Ying & Feng, Chao, 2023. "Breaking “resource curse” through green technological innovations: Evidence from 286 cities in China," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    2. Xie, Ronghui & Teo, Thompson S.H., 2022. "Green technology innovation, environmental externality, and the cleaner upgrading of industrial structure in China — Considering the moderating effect of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    3. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    4. Shuying Wang & Yifei Gao & Hongchang Zhou, 2022. "Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective—Based on the TOE Theoretical Framework," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    5. Ning Zhang & Jinhua Sun & Yu Tang & Jianqun Zhang & Valentina Boamah & Decai Tang & Xiaoxue Zhang, 2023. "How Do Green Finance and Green Technology Innovation Impact the Yangtze River Economic Belt’s Industrial Structure Upgrading in China? A Moderated Mediation Effect Model Based on Provincial Panel Data," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    6. Xiaoling Zhang & Zhangming Shan & Xuerong Wang & Decai Tang, 2023. "The Impact of Green Finance on Upgrading the Manufacturing Industry of the Yangtze River Economic Belt Based on the Spatial Econometric Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    7. Zhuo, Chengfeng & Xie, Yuping & Mao, Yanhua & Chen, Pengqin & Li, Yiqiao, 2022. "Can cross-regional environmental protection promote urban green development: Zero-sum game or win-win choice?," Energy Economics, Elsevier, vol. 106(C).
    8. Lee, Chien-Chiang & Yuan, Zihao & Lee, Chi-Chuan & Chang, Yu-Fang, 2022. "The impact of renewable energy technology innovation on energy poverty: Does climate risk matter?," Energy Economics, Elsevier, vol. 116(C).
    9. Bai, Dongbei & Hu, Jin & Irfan, Muhammad & Hu, Mingjun, 2023. "Unleashing the impact of ecological civilization pilot policies on green technology innovation: Evidence from a novel SC-DID model," Energy Economics, Elsevier, vol. 125(C).
    10. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    11. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    12. Yan Wang & Yuan Gong & Caiquan Bai & Hong Yan & Xing Yi, 2023. "Exploring the convergence patterns of PM2.5 in Chinese cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 708-733, January.
    13. Juan Tang & Fangming Qin, 2022. "Analyzing the impact of local government competition on green total factor productivity from the factor market distortion perspective: based on the three stage DEA model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14298-14326, December.
    14. Christopoulos, Konstantinos & Eleftheriou, Konstantinos, 2020. "Premature mortality in the US: A convergence study," Social Science & Medicine, Elsevier, vol. 258(C).
    15. Yaozu Xue, 2022. "Evaluation analysis on industrial green total factor productivity and energy transition policy in resource-based region," Energy & Environment, , vol. 33(3), pages 419-434, May.
    16. Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    17. Shang, Hua & Jiang, Li & Pan, Xianyou & Pan, Xiongfeng, 2022. "Green technology innovation spillover effect and urban eco-efficiency convergence: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 114(C).
    18. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    19. Rui Ding & Fangcheng Sun, 2023. "Impact of River Chief System on Green Technology Innovation: Empirical Evidence from the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    20. Xiangqian Wang & Shudong Wang & Yongqiu Xia, 2022. "Evaluation and Dynamic Evolution of the Total Factor Environmental Efficiency in China’s Mining Industry," Energies, MDPI, vol. 15(3), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:66:y:2023:i:c:p:189-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.