IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v179y2025ics0304414924002096.html
   My bibliography  Save this article

Mixed orthogonality graphs for continuous-time stationary processes

Author

Listed:
  • Fasen-Hartmann, Vicky
  • Schenk, Lea

Abstract

In this paper, we introduce different concepts of Granger causality and contemporaneous correlation for multivariate stationary continuous-time processes to model different dependencies between the component processes. Several equivalent characterisations are given for the different definitions, in particular by orthogonal projections. We then define two mixed graphs based on different definitions of Granger causality and contemporaneous correlation, the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs, the components of the process are represented by vertices, directed edges between the vertices visualise Granger causal influences and undirected edges visualise contemporaneous correlation between the component processes. Further, we introduce various notions of Markov properties in analogy to Eichler (2012), which relate paths in the graphs to different dependence structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR) processes, we explicitly characterise the edges in the (local) orthogonality graph by the model parameters.

Suggested Citation

  • Fasen-Hartmann, Vicky & Schenk, Lea, 2025. "Mixed orthogonality graphs for continuous-time stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002096
    DOI: 10.1016/j.spa.2024.104501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924002096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florens, J.P. & Mouchart, M., 1982. "A note on noncausality," LIDAM Reprints CORE 479, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Daniel Commenges & Anne Gégout‐Petit, 2009. "A general dynamical statistical model with causal interpretation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 719-736, June.
    3. Renault, E. & Szafarz, A., 1991. "True Versus Spurious Instantaneous Causality," Papers 9103, Universite Libre de Bruxelles - C.E.M.E..
    4. Thomas Richardson, 2003. "Markov Properties for Acyclic Directed Mixed Graphs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 145-157, March.
    5. Karla Zadnik & Lisa A. Jones & Brett C. Irvin & Robert N. Kleinstein & Ruth E. Manny & Julie A. Shin & Donald O. Mutti, 2000. "Myopia and ambient night-time lighting," Nature, Nature, vol. 404(6774), pages 143-144, March.
    6. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    7. Eichler, Michael, 2007. "Granger causality and path diagrams for multivariate time series," Journal of Econometrics, Elsevier, vol. 137(2), pages 334-353, April.
    8. Florens, J P & Mouchart, M, 1982. "A Note on Noncausality," Econometrica, Econometric Society, vol. 50(3), pages 583-591, May.
    9. Marquardt, Tina & Stelzer, Robert, 2007. "Multivariate CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 96-120, January.
    10. Steen A. Andersson & David Madigan & Michael D. Perlman, 2001. "Alternative Markov Properties for Chain Graphs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 33-85, March.
    11. Vanessa Didelez, 2007. "Graphical Models for Composable Finite Markov Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 169-185, March.
    12. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    13. Harvey, A. C. & Stock, James H., 1989. "Estimating integrated higher-order continuous time autoregressions with an application to money-income causality," Journal of Econometrics, Elsevier, vol. 42(3), pages 319-336, November.
    14. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.
    15. Marquardt, Tina, 2007. "Multivariate fractionally integrated CARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1705-1725, October.
    16. Bergstrom, A.R., 1997. "Gaussian Estimation of Mixed-Order Continuous-Time Dynamic Models with Unobservable Stochastic Trends from Mixed Stock and Flow Data," Econometric Theory, Cambridge University Press, vol. 13(4), pages 467-505, February.
    17. FLORENS, Jean-Pierre & MOUCHART, Michel, 1985. "A linear theory for noncausality," LIDAM Reprints CORE 598, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Chamberlain, Gary, 1982. "The General Equivalence of Granger and Sims Causality," Econometrica, Econometric Society, vol. 50(3), pages 569-581, May.
    19. Florens, Jean-Pierre & Mouchart, Michel, 1985. "A Linear Theory for Noncausality," Econometrica, Econometric Society, vol. 53(1), pages 157-175, January.
    20. Comte, F. & Renault, E., 1996. "Noncausality in Continuous Time Models," Econometric Theory, Cambridge University Press, vol. 12(2), pages 215-256, June.
    21. Harvey, A. C. & Stock, James H., 1985. "The Estimation of Higher-Order Continuous Time Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 1(1), pages 97-117, April.
    22. Brockwell, Peter J. & Lindner, Alexander, 2015. "Prediction of Lévy-driven CARMA processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 263-271.
    23. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    24. Florens, Jean-Pierre & Fougere, Denis, 1996. "Noncausality in Continuous Time," Econometrica, Econometric Society, vol. 64(5), pages 1195-1212, September.
    25. Vanessa Didelez, 2008. "Graphical models for marked point processes based on local independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 245-264, February.
    26. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    2. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    3. Michael Lechner, 2006. "The Relation of Different Concepts of Causality in Econometrics," University of St. Gallen Department of Economics working paper series 2006 2006-15, Department of Economics, University of St. Gallen.
    4. Eichler, M. & Didelez, V., 2009. "On Granger-causality and the effect of interventions in time series," Research Memorandum 003, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    5. McCrorie, J. Roderick & Chambers, Marcus J., 2006. "Granger causality and the sampling of economic processes," Journal of Econometrics, Elsevier, vol. 132(2), pages 311-336, June.
    6. Francesco Bartolucci & Claudia Pigini, 2017. "Granger causality in dynamic binary short panel data models," Working Papers 421, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    7. Petrović, Ljiljana & Dimitrijević, Sladjana, 2012. "Causality with finite horizon of the past in continuous time," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1219-1223.
    8. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    9. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    10. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.
    11. Colombi, R. & Giordano, S., 2012. "Graphical models for multivariate Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 90-103.
    12. Roberto Colombi & Sabrina Giordano, 2013. "Monotone dependence in graphical models for multivariate Markov chains," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 873-885, October.
    13. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, March.
    14. Pigini, Claudia & Bartolucci, Francesco, 2022. "Conditional inference for binary panel data models with predetermined covariates," Econometrics and Statistics, Elsevier, vol. 23(C), pages 83-104.
    15. Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
    16. Vicky Fasen‐Hartmann & Sebastian Kimmig, 2020. "Robust estimation of stationary continuous‐time arma models via indirect inference," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 620-651, September.
    17. Jonathan B. Hill, 2007. "Efficient tests of long-run causation in trivariate VAR processes with a rolling window study of the money-income relationship," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 747-765.
    18. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    19. Jonathan B. Hill, 2005. "Causation Delays and Causal Neutralization up to Three Steps Ahead: The Money-Output Relationship Revisited," Econometrics 0503016, University Library of Munich, Germany, revised 23 Mar 2005.
    20. Merkle, Ana, 2023. "Causal predictability and weak solutions of the stochastic differential equations with driving semimartingales," Statistics & Probability Letters, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.