IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v39y2013i1p50-57.html
   My bibliography  Save this article

The efficiency of public transport operations – An evaluation using stochastic frontier analysis

Author

Listed:
  • Holmgren, Johan

Abstract

The aim of this study is to evaluate the efficiency of public transport operations undertaken in Swedish counties by the Public Transport Authorities (PTA), taking into account the substantial differences in operating conditions between counties. The analysis will be performed using Stochastic Frontier Analysis (SFA) with annual data from 1986 to 2009 for 26 Swedish counties. The analysis shows how the efficiency of the individual counties has changed over time. The results are used to provide a ranking (in terms of efficiency) of the Swedish public transport authorities that can provide a basis for benchmarking. It is concluded that the efficiency of the public transport providers in all counties fell during the observed time period. Defining cost efficiency as the ratio of minimum cost to observed cost, the overall (average) cost efficiency for the industry fell from 85.7% in the eighties to 60.4% for the period from 2000 to 2009. Possible explanations for the development include increased emphasis on route density as well as higher environmental and safety requirements.

Suggested Citation

  • Holmgren, Johan, 2013. "The efficiency of public transport operations – An evaluation using stochastic frontier analysis," Research in Transportation Economics, Elsevier, vol. 39(1), pages 50-57.
  • Handle: RePEc:eee:retrec:v:39:y:2013:i:1:p:50-57
    DOI: 10.1016/j.retrec.2012.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885912000686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2012.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ljungberg, Anders, 2010. "Local public transport on the basis of social economic criteria," Research in Transportation Economics, Elsevier, vol. 29(1), pages 339-345.
    2. Dag Dalen & Andres Gómez-Lobo, 2003. "Yardsticks on the road: Regulatory contracts and cost efficiency in the Norwegian bus industry," Transportation, Springer, vol. 30(4), pages 371-386, November.
    3. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    4. Barbot, Cristina & Costa, Ã lvaro & Sochirca, Elena, 2008. "Airlines performance in the new market context: A comparative productivity and efficiency analysis," Journal of Air Transport Management, Elsevier, vol. 14(5), pages 270-274.
    5. Reifschneider, David & Stevenson, Rodney, 1991. "Systematic Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 715-723, August.
    6. Bruno De Borger & Kristiaan Kerstens & Álvaro Costa, 2002. "Public transit performance: What does one learn from frontier studies?," Transport Reviews, Taylor & Francis Journals, vol. 22(1), pages 1-38, January.
    7. Chambers,Robert G., 1988. "Applied Production Analysis," Cambridge Books, Cambridge University Press, number 9780521314275.
    8. Bhadra, Dipasis, 2009. "Race to the bottom or swimming upstream: Performance analysis of US airlines," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 227-235.
    9. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    10. Mueller,Dennis C., 2003. "Public Choice III," Cambridge Books, Cambridge University Press, number 9780521894753.
    11. Hansson, Lisa, 2010. "Solving procurement problems in public transport: Examining multi-principal roles in relation to effective control mechanisms," Research in Transportation Economics, Elsevier, vol. 29(1), pages 124-132.
    12. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    13. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network," Research in Transportation Economics, Elsevier, vol. 29(1), pages 231-242.
    14. Odeck, James, 2008. "The effect of mergers on efficiency and productivity of public transport services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 696-708, May.
    15. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, September.
    16. Magnus Söderberg, 2009. "A Broad Performance Benchmark Based On Citizens’ Preferences: The Case Of Swedish Public Transportation," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 80(4), pages 579-603, December.
    17. Carlo Cambini & Massimiliano Piacenza & Davide Vannoni, 2007. "Restructuring Public Transit Systems: Evidence on Cost Properties from Medium and Large-Sized Companies," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 31(3), pages 183-203, November.
    18. Massimiliano Piacenza, 2006. "Regulatory Contracts and Cost Efficiency: Stochastic Frontier Evidence from the Italian Local Public Transport," Journal of Productivity Analysis, Springer, vol. 25(3), pages 257-277, June.
    19. Merkert, Rico & Hensher, David A., 2011. "The impact of strategic management and fleet planning on airline efficiency - A random effects Tobit model based on DEA efficiency scores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 686-695, August.
    20. Ouellette, Pierre & Petit, Patrick & Tessier-Parent, Louis-Philippe & Vigeant, Stéphane, 2010. "Introducing regulation in the measurement of efficiency, with an application to the Canadian air carriers industry," European Journal of Operational Research, Elsevier, vol. 200(1), pages 216-226, January.
    21. Sakai, Hiroki & Shoji, Kenichi, 2010. "The effect of governmental subsidies and the contractual model on the publicly-owned bus sector in Japan," Research in Transportation Economics, Elsevier, vol. 29(1), pages 60-71.
    22. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cinzia Daraio & Marco Diana & Flavia Di Costa & Claudio Leporelli & Giorgio Matteucci & Alberto Nastasi, 2014. "Efficiency and effectiveness in the urban public transport sector: a critical review with directions for future research," DIAG Technical Reports 2014-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    2. Nilsson, Jan-Eric & Ahlberg , Joakim & Pyddoke, Roger, 2014. "Optimal supply of public transport: subsidising production or consumption or both?," Working papers in Transport Economics 2014:27, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    3. Lidestam, Helene & Camén, Carolina & Lidestam, Björn, 2018. "Evaluation of cost drivers within public bus transports in Sweden," Research in Transportation Economics, Elsevier, vol. 69(C), pages 157-164.
    4. Obeng, K. & Sakano, R., 2020. "Effects of government regulations and input subsidies on cost efficiency: A decomposition approach," Transport Policy, Elsevier, vol. 91(C), pages 95-107.
    5. Cowie, Jonathan, 2014. "Performance, profit and consumer sovereignty in the English deregulated bus market," Research in Transportation Economics, Elsevier, vol. 48(C), pages 255-262.
    6. Ilaria Delponte, 2021. "Institutional and Non-Institutional Governance Initiatives in Urban Transport Planning: The Paradigmatic Case of the Post-Collapse of the Morandi Bridge in Genoa," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    7. Merkert, Rico & Mulley, Corinne & Hakim, Md Mahbubul, 2017. "Determinants of bus rapid transit (BRT) system revenue and effectiveness – A global benchmarking exercise," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 75-88.
    8. Vunjak Nenad & Davidovic Milivoje, 2014. "Cost Efficiency Of Agroindustrial Companies In Vojvodina: Dea Approach," Interdisciplinary Management Research, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 10, pages 369-376.
    9. Atefeh Taghavi & Reza Ghanbari & Khatere Ghorbani-Moghadam & Alireza Davoodi & Ali Emrouznejad, 2022. "A genetic algorithm for solving bus terminal location problem using data envelopment analysis with multi-objective programming," Annals of Operations Research, Springer, vol. 309(1), pages 259-276, February.
    10. Obeng, K., 2019. "Public transit cost efficiency studies: The impact of non-contracting regulations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 247-258.
    11. Markéta Matulová & Hana Fitzová, 2018. "Transformation of urban public transport financing and its effect on operators’ efficiency: evidence from the Czech Republic," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 967-983, December.
    12. Vigren, Andreas, 2016. "Cost efficiency in Swedish public transport," Research in Transportation Economics, Elsevier, vol. 59(C), pages 123-132.
    13. Pal, Debdatta & Mitra, Subrata K., 2016. "An application of the directional distance function with the number of accidents as an undesirable output to measure the technical efficiency of state road transport in India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 93(C), pages 1-12.
    14. Hao Xu & Yeqing Wang & Hongwei Liu & Ronglu Yang, 2020. "Environmental Efficiency Measurement and Convergence Analysis of Interprovincial Road Transport in China," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    15. Celik, Erkan & Bilisik, Ozge Nalan & Erdogan, Melike & Gumus, Alev Taskin & Baracli, Hayri, 2013. "An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 28-51.
    16. Gang Lin & Shaoli Wang & Conghua Lin & Linshan Bu & Honglei Xu, 2021. "Evaluating Performance of Public Transport Networks by Using Public Transport Criteria Matrix Analytic Hierarchy Process Models—Case Study of Stonnington, Bayswater, and Cockburn Public Transport Netw," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    17. van Engelen, Matti & Cats, Oded & Post, Henk & Aardal, Karen, 2018. "Enhancing flexible transport services with demand-anticipatory insertion heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 110-121.
    18. Mouwen, Arnoud & van Ommeren, Jos, 2016. "The effect of contract renewal and competitive tendering on public transport costs, subsidies and ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 78-89.
    19. Nassereddine, M. & Eskandari, H., 2017. "An integrated MCDM approach to evaluate public transportation systems in Tehran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 427-439.
    20. Vigren, Andreas, 2014. "Costs for Swedish public transport authorities in tendered bus contracts," Working papers in Transport Economics 2014:22, CTS - Centre for Transport Studies Stockholm (KTH and VTI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barros, Carlos P. & Liang, Qi Bin & Peypoch, Nicolas, 2013. "The technical efficiency of US Airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 139-148.
    2. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
    3. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    4. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    5. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
    6. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    7. Cavaignac, Laurent & Petiot, Romain, 2017. "A quarter century of Data Envelopment Analysis applied to the transport sector: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 84-96.
    8. George E. Halkos & Nickolaos G. Tzeremes, 2015. "Measuring Seaports' Productivity: A Malmquist Productivity Index Decomposition Approach," Journal of Transport Economics and Policy, University of Bath, vol. 49(2), pages 355-376, April.
    9. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
    10. Cinzia Daraio & Marco Diana & Flavia Di Costa & Claudio Leporelli & Giorgio Matteucci & Alberto Nastasi, 2014. "Efficiency and effectiveness in the urban public transport sector: a critical review with directions for future research," DIAG Technical Reports 2014-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    11. Boon L Lee & Clevo Wilson & Carl A Pasurka, Jr, 2013. "The Good, the Bad and the Efficient: Productivity, efficiency and technical change in the Airline Industry, 2004:2008," School of Economics and Finance Discussion Papers and Working Papers Series 299, School of Economics and Finance, Queensland University of Technology.
    12. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
    13. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    14. Boon Liat Lee & Clevo Wilson & Carl A. Pasurka & Hidemichi Fujii & Shunsuke Managi, 2017. "Sources of airline productivity from carbon emissions: an analysis of operational performance under good and bad outputs," Journal of Productivity Analysis, Springer, vol. 47(3), pages 223-246, June.
    15. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
    16. Tsionas, Mike G. & Chen, Zhongfei & Wanke, Peter, 2017. "A structural vector autoregressive model of technical efficiency and delays with an application to Chinese airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 1-10.
    17. Saranga, Haritha & Nagpal, Rajiv, 2016. "Drivers of operational efficiency and its impact on market performance in the Indian Airline industry," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 165-176.
    18. Cullmann, Astrid & Farsi, Mehdi & Filippini Massimo, 2009. "Unobserved Heterogeneity and International Benchmarking in Public Trasport," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0904, USI Università della Svizzera italiana.
    19. Avenali, Alessandro & Boitani, Andrea & Catalano, Giuseppe & D’Alfonso, Tiziana & Matteucci, Giorgio, 2016. "Assessing standard costs in local public bus transport: Evidence from Italy," Transport Policy, Elsevier, vol. 52(C), pages 164-174.
    20. Tavassoli, Mohammad & Faramarzi, Gholam Reza & Farzipoor Saen, Reza, 2014. "Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 146-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:39:y:2013:i:1:p:50-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.