IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v53y2024i6s004873332400057x.html
   My bibliography  Save this article

The yin yang of AI: Exploring how commercial and non-commercial orientations shape machine learning innovation

Author

Listed:
  • Brea, Edgar

Abstract

The scale of the potential implications of machine learning (ML) has prompted discussions on the issues of corporate control and technological openness. However, how commercial and non-commercially oriented organisations each contribute to ML progress remains an open question. This study uses the recombinant innovation perspective as a lens to explore recombinant patterns across projects in an open source software (OSS) environment – where a great deal of ML innovation occurs – and assess how commercial orientation influences such patterns. It builds on a unique dataset containing data on 28,443 OSS projects, their code dependencies and the organisations owning them. Exploratory analyses reveal that ML projects combine larger and more diverse components, and produce more atypical combinations in shorter timeframes than other OSS projects, and that both company and non-company owned ML projects contribute to such recombinant atypicality. Regression analyses indicate that company owned ML projects tend to rely more on distant combinations of technical knowledge, whereas non-company owned ML projects tend to produce more novel combinations of application ideas. By extending the theories of recombinant innovation and motivation in OS innovation into a new setting – ML technology, this study contributes to both literatures by confirming that the link between distant recombination and innovation still holds in contexts characterised by complex search spaces, and by suggesting complementarities between commercial and non-commercial orientations in OSS environments rich in knowledge diversity and recombinant activity.

Suggested Citation

  • Brea, Edgar, 2024. "The yin yang of AI: Exploring how commercial and non-commercial orientations shape machine learning innovation," Research Policy, Elsevier, vol. 53(6).
  • Handle: RePEc:eee:respol:v:53:y:2024:i:6:s004873332400057x
    DOI: 10.1016/j.respol.2024.105008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004873332400057X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2024.105008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:53:y:2024:i:6:s004873332400057x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.