IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v38y2009i7p1192-1202.html
   My bibliography  Save this article

Components, systems and discontinuities: The case of magnetic recording and playback equipment

Author

Listed:
  • Funk, Jeffery

Abstract

Using the history of magnetic recording and playback equipment, this paper explores the relationship between incremental improvements in components and technological discontinuities in systems. It finds that improvements in components have been the major source of all discontinuities in the industry. Focusing just on tape-based systems, all of the basic design approaches had been identified by the late 1950s and thus one of the largest technological challenges for firms has been to modify the design in response to improvements in the magnetic recording density of tape. This paper explores this phenomenon by analyzing data on equipment performance and price, and several design choices for the tape-based equipment. It shows how improvements in the magnetic recording density have changed the tradeoffs that exist between price and different dimensions of performance and between various design choices and thus led to about 10 technological discontinuities in magnetic tape system design.

Suggested Citation

  • Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
  • Handle: RePEc:eee:respol:v:38:y:2009:i:7:p:1192-1202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048-7333(09)00077-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frenken, Koen & Saviotti, Paolo P. & Trommetter, Michel, 1999. "Variety and niche creation in aircraft, helicopters, motorcycles and microcomputers," Research Policy, Elsevier, vol. 28(5), pages 469-488, June.
    2. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    3. Sanderson, Susan & Uzumeri, Mustafa, 1995. "Managing product families: The case of the Sony Walkman," Research Policy, Elsevier, vol. 24(5), pages 761-782, September.
    4. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    5. Freeman, Chris & Louca, Francisco, 2002. "As Time Goes By: From the Industrial Revolutions to the Information Revolution," OUP Catalogue, Oxford University Press, number 9780199251056.
    6. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    7. Herbert A. Simon, 1996. "The Sciences of the Artificial, 3rd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691914, December.
    8. Cusumano, Michael A. & Mylonadis, Yiorgos & Rosenbloom, Richard S., 1992. "Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS over Beta," Business History Review, Cambridge University Press, vol. 66(1), pages 51-94, April.
    9. Jeffrey Funk, 2007. "Technological Change Within Hierarchies: The Case Of The Music Industry," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 16(1), pages 1-16.
    10. Jeffrey Funk, 2008. "Systems, Components and Technological Discontinuities: The Case of the Semiconductor Industry," Industry and Innovation, Taylor & Francis Journals, vol. 15(4), pages 411-433.
    11. Ron Adner & Peter Zemsky, 2005. "Disruptive Technologies and the Emergence of Competition," RAND Journal of Economics, The RAND Corporation, vol. 36(2), pages 229-254, Summer.
    12. Clark, Kim B., 1985. "The interaction of design hierarchies and market concepts in technological evolution," Research Policy, Elsevier, vol. 14(5), pages 235-251, October.
    13. Sahal, Devendra, 1985. "Technological guideposts and innovation avenues," Research Policy, Elsevier, vol. 14(2), pages 61-82, April.
    14. Rosenberg, Nathan, 1963. "Technological Change in the Machine Tool Industry, 1840–1910," The Journal of Economic History, Cambridge University Press, vol. 23(4), pages 414-443, December.
    15. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    16. Levinthal, Daniel A, 1998. "The Slow Pace of Rapid Technological Change: Gradualism and Punctuation in Technological Change," Industrial and Corporate Change, Oxford University Press, vol. 7(2), pages 217-247, June.
    17. Ron Adner & Daniel Levinthal, 2001. "Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation," Management Science, INFORMS, vol. 47(5), pages 611-628, May.
    18. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    19. Malerba, Franco, et al, 1999. "'History-Friendly' Models of Industry Evolution: The Computer Industry," Industrial and Corporate Change, Oxford University Press, vol. 8(1), pages 3-40, March.
    20. Rosenberg, Nathan, 1969. "The Direction of Technological Change: Inducement Mechanisms and Focusing Devices," Economic Development and Cultural Change, University of Chicago Press, vol. 18(1), pages 1-24, Part I Oc.
    21. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    2. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    3. Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
    4. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    5. Luo, Jianxi, 2018. "Architecture and evolvability of innovation ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 132-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    2. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    3. Malhotra, Abhishek & Zhang, Huiting & Beuse, Martin & Schmidt, Tobias, 2021. "How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology," Research Policy, Elsevier, vol. 50(9).
    4. Ng, Pei-Sin & Funk, Jeffrey L., 2013. "When do new technologies become economically feasible? The case of three-dimensional television," Technology in Society, Elsevier, vol. 35(1), pages 22-31.
    5. Mary Tripsas, 2008. "Customer preference discontinuities: a trigger for radical technological change," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 29(2-3), pages 79-97.
    6. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
    7. Kapoor, Rahul & Klueter, Thomas, 2020. "Progress and setbacks: The two faces of technology emergence," Research Policy, Elsevier, vol. 49(1).
    8. Lehrer, Mark & Banerjee, Preeta M. & Wang, I. Kim, 2017. "When the sky is the limit on scale: From temporal to multiplicative scaling in process-based technologies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 151-159.
    9. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.
    10. Geels, Frank W., 2010. "Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective," Research Policy, Elsevier, vol. 39(4), pages 495-510, May.
    11. Raven, Rob P.J.M., 2006. "Towards alternative trajectories? Reconfigurations in the Dutch electricity regime," Research Policy, Elsevier, vol. 35(4), pages 581-595, May.
    12. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    13. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    14. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.
    15. Koen Frenken & Alessandro Nuvolari, 2004. "Entropy statistics as a framework to analyse technological evolution," Chapters, in: John Foster & Werner Hölzl (ed.), Applied Evolutionary Economics and Complex Systems, chapter 5, Edward Elgar Publishing.
    16. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    17. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    18. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    19. Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
    20. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:38:y:2009:i:7:p:1192-1202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/respol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.