IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v72y2023ics0928765523000118.html
   My bibliography  Save this article

Energy transition under mineral constraints and recycling: A low-carbon supply peak

Author

Listed:
  • Chazel, Simon
  • Bernard, Sophie
  • Benchekroun, Hassan

Abstract

What are the implications of primary mineral constraints for the energy transition? Low-carbon energy production uses green capital, which requires primary minerals. We build on the seminal framework for the transition from a dirty to a clean energy in Golosov et al. (2014) to incorporate the role played by primary minerals and their potential recycling. We characterize the optimal paths of the energy transition under various mineral constraint scenarios. Mineral constraints limit the development of green energy in the long run: Low-carbon energy production eventually reaches a plateau. We run our simulations using copper as the limiting mineral and we allow for its full recycling. Even in the limiting case of a 100% recycling rate, after five to six decades green energy production is 50% lower than in the scenario with unlimited primary copper, and after 30 decades, GDP is 3–8% lower. In extension scenarios, we confirm that a longer life duration of green capital delays copper extraction and the green energy peak, whereas reduced recycling caps moves the peak in green energy production forward.

Suggested Citation

  • Chazel, Simon & Bernard, Sophie & Benchekroun, Hassan, 2023. "Energy transition under mineral constraints and recycling: A low-carbon supply peak," Resource and Energy Economics, Elsevier, vol. 72(C).
  • Handle: RePEc:eee:resene:v:72:y:2023:i:c:s0928765523000118
    DOI: 10.1016/j.reseneeco.2023.101356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765523000118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2023.101356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    2. Gondia Sokhna Seck & Emmanuel Hache & Clement Bonnet & Marine Simoën & Samuel Carcanague, 2020. "Copper at the crossroads : Assessment of the interactions between low-carbon energy transition and supply limitations," Post-Print hal-03118509, HAL.
    3. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
    4. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    5. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    6. Nadine Rötzer & Mario Schmidt, 2018. "Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified?," Resources, MDPI, vol. 7(4), pages 1-14, December.
    7. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    8. Pommeret, Aude & Schubert, Katheline, 2022. "Optimal energy transition with variable and intermittent renewable electricity generation," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    9. Lawrence D. Meinert & Gilpin R. Robinson & Nedal T. Nassar, 2016. "Mineral Resources: Reserves, Peak Production and the Future," Resources, MDPI, vol. 5(1), pages 1-14, February.
    10. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    11. Rob Hart, 2019. "To Everything There Is a Season: Carbon Pricing, Research Subsidies, and the Transition to Fossil-Free Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(2), pages 349-389.
    12. Michael Knoblach & Martin Roessler & Patrick Zwerschke, 2020. "The Elasticity of Substitution Between Capital and Labour in the US Economy: A Meta‐Regression Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(1), pages 62-82, February.
    13. García-Olivares, Antonio & Ballabrera-Poy, Joaquim & García-Ladona, Emili & Turiel, Antonio, 2012. "A global renewable mix with proven technologies and common materials," Energy Policy, Elsevier, vol. 41(C), pages 561-574.
    14. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    15. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    2. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    3. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    4. Kollenbach, Gilbert, 2017. "On the optimal accumulation of renewable energy generation capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 157-179.
    5. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    6. Amigues, Jean-Pierre & Moreaux, Michel, 2018. "Competing Land Uses and Fossil Fuel, Optimal Energy Conversion Rates During the Transition Toward a Green Economy Under a Pollution Stock Constraint," TSE Working Papers 18-981, Toulouse School of Economics (TSE).
    7. Amigues, Jean-Pierre & Moreaux, Michel, 2016. "The Joint Dynamics of the Energy Mix, Land Uses and Energy Efficiency Rates During the Transition Toward the Green Economy," TSE Working Papers 16-625, Toulouse School of Economics (TSE).
    8. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    9. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    10. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    11. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    12. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    13. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean Innovation and Heterogeneous Financing Costs," CAMA Working Papers 2023-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University, revised Oct 2023.
    14. Jean-Pierre Amigues & Michel Moreaux & Nguyen Manh-Hung, 2019. "The Fossil Energy Interlude: Optimal Building, Maintaining and Scraping a Dedicated Capital, and the Hotelling Rule," Working Papers 2019.07, FAERE - French Association of Environmental and Resource Economists.
    15. Elena N. Shaforostova & Olga V. Kosareva-Volod’ko & Olga V. Belyankina & Danila Y. Solovykh & Ekaterina S. Sazankova & Elena I. Sizova & Danila A. Adigamov, 2023. "A Tailing Dump as Industrial Deposit; Study of the Mineralogical Composition of Tailing Dump of the Southern Urals and the Possibility of Tailings Re-Development," Resources, MDPI, vol. 12(2), pages 1-13, February.
    16. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    17. Carfora, Alfonso & Pansini, Rosaria Vega & Scandurra, Giuseppe, 2022. "Energy dependence, renewable energy generation and import demand: Are EU countries resilient?," Renewable Energy, Elsevier, vol. 195(C), pages 1262-1274.
    18. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    19. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2015. "Endogenous economic growth, EROI, and transition towards renewable energy," Working Papers 1507, Chaire Economie du climat.
    20. Hart, Rob, 2020. "Growth, pollution, policy!," European Economic Review, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:72:y:2023:i:c:s0928765523000118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.