IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v83y2014icp190-201.html
   My bibliography  Save this article

Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining

Author

Listed:
  • Northey, S.
  • Mohr, S.
  • Mudd, G.M.
  • Weng, Z.
  • Giurco, D.

Abstract

The concept of “peak oil” has been explored and debated extensively within the literature. However there has been comparatively little research examining the concept of “peak minerals”, particularly in-depth analyses for individual metals. This paper presents scenarios for mined copper production based upon a detailed assessment of global copper resources and historic mine production. Scenarios for production from major copper deposit types and from individual countries or regions were developed using the Geologic Resources Supply-Demand Model (GeRS-DeMo). These scenarios were extended using cumulative grade-tonnage data, derived from our resource database, to produce estimates of potential rates of copper ore grade decline.

Suggested Citation

  • Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
  • Handle: RePEc:eee:recore:v:83:y:2014:i:c:p:190-201
    DOI: 10.1016/j.resconrec.2013.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913002127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James West, 2011. "Decreasing Metal Ore Grades," Journal of Industrial Ecology, Yale University, vol. 15(2), pages 165-168, April.
    2. Smith, James L., 2012. "On the portents of peak oil (and other indicators of resource scarcity)," Energy Policy, Elsevier, vol. 44(C), pages 68-78.
    3. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    4. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    5. Ruth, Matthias, 1995. "Thermodynamic constraints on optimal depletion of copper and aluminum in the United States: a dynamic model of substitution and technical change," Ecological Economics, Elsevier, vol. 15(3), pages 197-213, December.
    6. Alicia Valero & Antonio Valero, 2013. "From Grave to Cradle," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 43-52, February.
    7. Feng, Lianyong & Li, Junchen & Pang, Xiongqi, 2008. "China's oil reserve forecast and analysis based on peak oil models," Energy Policy, Elsevier, vol. 36(11), pages 4149-4153, November.
    8. Alvarado, S & Maldonado, P & Barrios, A & Jaques, I, 2002. "Long term energy-related environmental issues of copper production," Energy, Elsevier, vol. 27(2), pages 183-196.
    9. Mohr, S.H. & Evans, G.M., 2011. "Long term forecasting of natural gas production," Energy Policy, Elsevier, vol. 39(9), pages 5550-5560, September.
    10. Mudd, Gavin M., 2010. "The Environmental sustainability of mining in Australia: key mega-trends and looming constraints," Resources Policy, Elsevier, vol. 35(2), pages 98-115, June.
    11. Swart, Pilar & Dewulf, Jo, 2013. "Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 180-187.
    12. Crowson, Phillip, 2012. "Some observations on copper yields and ore grades," Resources Policy, Elsevier, vol. 37(1), pages 59-72.
    13. Bentley, R. W., 2002. "Global oil & gas depletion: an overview," Energy Policy, Elsevier, vol. 30(3), pages 189-205, February.
    14. Kharitonova, M. & Mikhailov, A. & Matsko, N., 2013. "Influence of the time factor on the availability of deposits of nonferrous metals," Resources Policy, Elsevier, vol. 38(4), pages 490-495.
    15. Alvarado, Sergio & Maldonado, Pedro & Jaques, Iván, 1999. "Energy and environmental implications of copper production," Energy, Elsevier, vol. 24(4), pages 307-316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yi & Bai, Wenbo & Zhang, Yijun, 2024. "Resilience assessment of trade network in copper industry chain and the risk resistance capacity of core countries: Based on complex network," Resources Policy, Elsevier, vol. 92(C).
    2. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    3. Chazel, Simon & Bernard, Sophie & Benchekroun, Hassan, 2023. "Energy transition under mineral constraints and recycling: A low-carbon supply peak," Resource and Energy Economics, Elsevier, vol. 72(C).
    4. Pablo Viveros & Rodrigo Mena & Enrico Zio & Leonardo Miqueles & Fredy Kristjanpoller, 2023. "Integrated planning framework for preventive maintenance grouping: A case study for a conveyor system in the Chilean mining industry," Journal of Risk and Reliability, , vol. 237(5), pages 1011-1028, October.
    5. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    6. Brett J. Watson & Roderick G. Eggert, 2021. "Understanding relative metal prices and availability: Combining physical and economic perspectives," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 890-899, August.
    7. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    8. Marc van der Meide & Carina Harpprecht & Stephen Northey & Yongxiang Yang & Bernhard Steubing, 2022. "Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1631-1645, October.
    9. Song, Yi & Zhang, Zhouyi & Zhang, Yijun & Cheng, Jinhua, 2022. "Technological innovation and supply of critical metals: A perspective of industrial chains," Resources Policy, Elsevier, vol. 79(C).
    10. Daina Paulikas & Steven Katona & Erika Ilves & Saleem H. Ali, 2022. "Deep‐sea nodules versus land ores: A comparative systems analysis of mining and processing wastes for battery‐metal supply chains," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2154-2177, December.
    11. Heijlen, Wouter & Franceschi, Guy & Duhayon, Chris & Van Nijen, Kris, 2021. "Assessing the adequacy of the global land-based mine development pipeline in the light of future high-demand scenarios: The case of the battery-metals nickel (Ni) and cobalt (Co)," Resources Policy, Elsevier, vol. 73(C).
    12. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    13. Martin Stuermer & Maxwell Fleming & Ian Lange & Sayeh Shojaeinia, 2023. "Growth and Resources in Space: Pushing the Final Frontier?," Working Papers 2023-02, Colorado School of Mines, Division of Economics and Business.
    14. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
    15. Lin Liu & Heinz Schandl & James West & Meng Jiang & Zijian Ren & Dingjiang Chen & Bing Zhu, 2022. "Copper ore material footprints and transfers embodied in domestic and international trade of provinces in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1423-1436, August.
    16. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    17. Nilza Rivera & Juan Ignacio Guzmán & Gustavo Lagos, 2023. "A method to estimate the robustness of the secondary refined copper supply function," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 255-277, June.
    18. Restrepo, Natalia & Ceballos, Juan Camilo & Uribe, Jorge M., 2023. "Risk spillovers of critical metals firms," Resources Policy, Elsevier, vol. 86(PB).
    19. Nadine Rötzer, 2021. "Energetischer Aufwand der Bereitstellung von Primärkupfer für Deutschland [Energy demand of the supply of primary copper for Germany]," Sustainability Nexus Forum, Springer, vol. 29(2), pages 77-91, June.
    20. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    21. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    22. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    23. Francisco Ríos Muñoz & Camilo Peña Ramírez & José Meza & Tenzin Crouch, 2024. "Platinum Group Metals Extraction from Asteroids vs Earth: An Overview of the Industrial Ecosystems, Technologies and Risks," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(3), pages 681-700, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Castillo & Roderick Eggert, 2019. "Reconciling Diverging Views on Mineral Depletion: A Modified Cumulative Availability Curve Applied to Copper Resources," Working Papers 2019-02, Colorado School of Mines, Division of Economics and Business.
    2. Nadine Rötzer & Mario Schmidt, 2018. "Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified?," Resources, MDPI, vol. 7(4), pages 1-14, December.
    3. R. H. E. M. Koppelaar & H. Koppelaar, 2016. "The Ore Grade and Depth Influence on Copper Energy Inputs," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-16, December.
    4. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    5. Florian Fizaine & Victor Court, 2014. "Energy transition toward renewables and metal depletion: an approach through the EROI concept," Working Papers 1407, Chaire Economie du climat.
    6. Nadine Rötzer & Mario Schmidt, 2020. "Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change," Resources, MDPI, vol. 9(4), pages 1-31, April.
    7. Steve Mohr & Damien Giurco & Monique Retamal & Leah Mason & Gavin Mudd, 2018. "Global Projection of Lead-Zinc Supply from Known Resources," Resources, MDPI, vol. 7(1), pages 1-15, February.
    8. Michael Priester & Magnus Ericsson & Peter Dolega & Olof Löf, 2019. "Mineral grades: an important indicator for environmental impact of mineral exploitation," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(1), pages 49-73, April.
    9. Frederik Reitsma & Peter Woods & Martin Fairclough & Yongjin Kim & Harikrishnan Tulsidas & Luis Lopez & Yanhua Zheng & Ahmed Hussein & Gerd Brinkmann & Nils Haneklaus & Anand Rao Kacham & Tumuluri Sre, 2018. "On the Sustainability and Progress of Energy Neutral Mineral Processing," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    10. Fthenakis, Vasilis & Wang, Wenming & Kim, Hyung Chul, 2009. "Life cycle inventory analysis of the production of metals used in photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 493-517, April.
    11. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    12. West, James, 2020. "Extractable global resources and the future availability of metal stocks: “Known Unknowns” for the foreseeable future," Resources Policy, Elsevier, vol. 65(C).
    13. Correa, Juan A. & Gómez, Marcos & Luengo, Andrés & Parro, Francisco, 2021. "Environmental misallocation in the copper industry," Resources Policy, Elsevier, vol. 71(C).
    14. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2018. "A System Dynamics Model Assessment of the Supply of Niobium and Tantalum Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-35, June.
    15. Gustavo Lagos & David Peters & Marcos Lima & José Joaquín Jara, 2020. "Potential copper production through 2035 in Chile," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 43-56, July.
    16. Swart, Pilar & Dewulf, Jo, 2013. "Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 180-187.
    17. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    18. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    19. Kai Whiting & Luis Gabriel Carmona & Angeles Carrasco & Tânia Sousa, 2017. "Exergy Replacement Cost of Fossil Fuels: Closing the Carbon Cycle," Energies, MDPI, vol. 10(7), pages 1-21, July.
    20. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:83:y:2014:i:c:p:190-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.