IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp697-711.html
   My bibliography  Save this article

Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility

Author

Listed:
  • Alanne, Kari
  • Cao, Sunliang

Abstract

Hydrogen economy has become topical due to the rapid development of hydrogen vehicles and national hydrogen roadmaps. The zero-energy concept has been developed to support energy policy making with an aim at designing and building sustainable buildings and communities. In this article we define the concept ‘zero-energy hydrogen economy’ (ZEH2E) as such a zero-energy system, where hydrogen is one of the key energy carriers. We review recent research on the integration of zero-energy hydrogen economies at the level of single buildings and communities. We conclude that the energy use of transportation, hydrogen supply from other than renewable energy resources (e.g. as a by-product of industrial processes), and supporting metrics including the grid interactions, energy matching and reliability should be included in the zero-energy definition. We deduce that the research should focus on finding solutions that facilitate the parallel operation of conventional centralized systems and decentralized hydrogen economies. More research is needed to understand the impacts of the exchange of various energy types between vehicles, buildings and/or communities and hybrid smart grids. Innovative sharing economy models, incentives and energy policies are required. The awareness and acceptance of hydrogen technology among occupants and home owners should be surveyed and promoted.

Suggested Citation

  • Alanne, Kari & Cao, Sunliang, 2017. "Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 697-711.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:697-711
    DOI: 10.1016/j.rser.2016.12.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    2. Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Bacha, Seddik & Rodríguez, Pedro, 2011. "Optimal economic exploitation of hydrogen based grid-friendly zero energy buildings," Renewable Energy, Elsevier, vol. 36(1), pages 197-205.
    3. Clark II, Woodrow W. & Rifkin, Jeremy, 2006. "A green hydrogen economy," Energy Policy, Elsevier, vol. 34(17), pages 2630-2639, November.
    4. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    5. Williams, Brett D & Kurani, Kenneth S, 2007. "Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities," Institute of Transportation Studies, Working Paper Series qt34x5p0kn, Institute of Transportation Studies, UC Davis.
    6. McDowall, William & Eames, Malcolm, 2006. "Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature," Energy Policy, Elsevier, vol. 34(11), pages 1236-1250, July.
    7. Panagiotidou, Maria & Fuller, Robert J., 2013. "Progress in ZEBs—A review of definitions, policies and construction activity," Energy Policy, Elsevier, vol. 62(C), pages 196-206.
    8. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    9. Cao, Sunliang & Alanne, Kari, 2015. "Technical feasibility of a hybrid on-site H2 and renewable energy system for a zero-energy building with a H2 vehicle," Applied Energy, Elsevier, vol. 158(C), pages 568-583.
    10. Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
    11. Sovacool, Benjamin K. & Brossmann, Brent, 2010. "Symbolic convergence and the hydrogen economy," Energy Policy, Elsevier, vol. 38(4), pages 1999-2012, April.
    12. Pudukudy, Manoj & Yaakob, Zahira & Mohammad, Masita & Narayanan, Binitha & Sopian, Kamaruzzaman, 2014. "Renewable hydrogen economy in Asia – Opportunities and challenges: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 743-757.
    13. Ming, Zeng & Shaojie, Ouyang & Hui, Shi & Yujian, Ge & Qiqi, Qian, 2015. "Overall review of distributed energy development in China: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1226-1238.
    14. Ruban, Priya & Sellappa, Kanmani, 2014. "Development and performance of bench-scale reactor for the photocatalytic generation of hydrogen," Energy, Elsevier, vol. 73(C), pages 926-932.
    15. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    16. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
    17. Marino, C. & Nucara, A. & Pietrafesa, M. & Pudano, A., 2013. "An energy self-sufficient public building using integrated renewable sources and hydrogen storage," Energy, Elsevier, vol. 57(C), pages 95-105.
    18. Bleischwitz, Raimund & Bader, Nikolas & Trümper, Sören Christian, 2010. "The socio-economic transition towards a hydrogen economy," Energy Policy, Elsevier, vol. 38(10), pages 5297-5300, October.
    19. Lacko, R. & Drobnič, B. & Mori, M. & Sekavčnik, M. & Vidmar, M., 2014. "Stand-alone renewable combined heat and power system with hydrogen technologies for household application," Energy, Elsevier, vol. 77(C), pages 164-170.
    20. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    21. Niemi, R. & Mikkola, J. & Lund, P.D., 2012. "Urban energy systems with smart multi-carrier energy networks and renewable energy generation," Renewable Energy, Elsevier, vol. 48(C), pages 524-536.
    22. Xingang, Zhao & Xiaomeng, Liu & Pingkuo, Liu & Tiantian, Feng, 2011. "The mechanism and policy on the electricity price of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4302-4309.
    23. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    24. Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
    25. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
    26. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun & Scipioni, Antonio & Mazzi, Anna, 2015. "Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1217-1229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    2. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    3. Fokkema, Jan Eise & uit het Broek, Michiel A.J. & Schrotenboer, Albert H. & Land, Martin J. & Van Foreest, Nicky D., 2022. "Seasonal hydrogen storage decisions under constrained electricity distribution capacity," Renewable Energy, Elsevier, vol. 195(C), pages 76-91.
    4. Moudgil, Vipul & Hewage, Kasun & Hussain, Syed Asad & Sadiq, Rehan, 2023. "Integration of IoT in building energy infrastructure: A critical review on challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    5. César Benavente-Peces & Nisrine Ibadah, 2020. "Buildings Energy Efficiency Analysis and Classification Using Various Machine Learning Technique Classifiers," Energies, MDPI, vol. 13(13), pages 1-24, July.
    6. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    7. Younghoon Seo & Donghyun Lim & Woongbee Son & Yeongmin Kwon & Junghwa Kim & Hyungjoo Kim, 2020. "Deriving Mobility Service Policy Issues Based on Text Mining: A Case Study of Gyeonggi Province in South Korea," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    8. Gutiérrez-Martín, F. & Calcerrada, A.B. & de Lucas-Consuegra, A. & Dorado, F., 2020. "Hydrogen storage for off-grid power supply based on solar PV and electrochemical reforming of ethanol-water solutions," Renewable Energy, Elsevier, vol. 147(P1), pages 639-649.
    9. Ling-Chin, J. & Taylor, W. & Davidson, P. & Reay, D. & Nazi, W.I. & Tassou, S. & Roskilly, A.P., 2019. "UK building thermal performance from industrial and governmental perspectives," Applied Energy, Elsevier, vol. 237(C), pages 270-282.
    10. Zuzana Soltysova & Vladimir Modrak, 2020. "Challenges of the Sharing Economy for SMEs: A Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    11. Birol Kılkış & Şiir Kılkış, 2018. "Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus," Energies, MDPI, vol. 11(5), pages 1-33, May.
    12. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Kannaiyan, Kumaran & Lekshmi, G.S. & Ramakrishna, Seeram & Kang, Misook & Kumaravel, Vignesh, 2023. "Perspectives for the green hydrogen energy-based economy," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    2. Cao, Sunliang & Alanne, Kari, 2018. "The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle," Applied Energy, Elsevier, vol. 211(C), pages 639-661.
    3. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    4. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    5. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    7. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    8. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    9. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    10. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    11. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    12. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    13. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    14. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    15. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    16. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    17. Peter Andreasen, Kristian & Sovacool, Benjamin K., 2014. "Energy sustainability, stakeholder conflicts, and the future of hydrogen in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 891-897.
    18. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    19. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:697-711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.