IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i1p197-205.html
   My bibliography  Save this article

Optimal economic exploitation of hydrogen based grid-friendly zero energy buildings

Author

Listed:
  • Milo, Aitor
  • Gaztañaga, Haizea
  • Etxeberria-Otadui, Ion
  • Bacha, Seddik
  • Rodríguez, Pedro

Abstract

This paper presents economically optimized energy and power management strategies for grid-friendly hydrogen based Zero Energy Buildings (ZEBs). The proposed energy management strategy is an adaptative optimization-based strategy that minimizes the operation cost of the facility taking into account RES generation prediction errors. It is shown that with an Adaptative Optimized Five-step Charge Controller (AOFC2) the use of the different equipment is optimized and the overall operation cost is minimized considering the entire life of the facility. The proposed energy management strategy is coordinated with power management strategies to offer advanced functionalities (peak-shaving, reactive power control and back-up service) that provide added-value to the facility. The paper demonstrates by means of offline and real-time simulations, that an adequate energy and power management structure permits the optimal economic exploitation of an advanced ZEB (that includes an energy storage system), providing not only a zero energy annual balance but also interesting added-value features to the grid and to the local consumers.

Suggested Citation

  • Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Bacha, Seddik & Rodríguez, Pedro, 2011. "Optimal economic exploitation of hydrogen based grid-friendly zero energy buildings," Renewable Energy, Elsevier, vol. 36(1), pages 197-205.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:1:p:197-205
    DOI: 10.1016/j.renene.2010.06.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.06.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Contreras, Javier, 2007. "Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage," Renewable Energy, Elsevier, vol. 32(7), pages 1102-1126.
    2. Zoulias, E.I. & Glockner, R. & Lymberopoulos, N. & Tsoutsos, T. & Vosseler, I. & Gavalda, O. & Mydske, H.J. & Taylor, P., 2006. "Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 432-462, October.
    3. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    4. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    5. Kolhe, M. & Agbossou, K. & Hamelin, J. & Bose, T.K., 2003. "Analytical model for predicting the performance of photovoltaic array coupled with a wind turbine in a stand-alone renewable energy system based on hydrogen," Renewable Energy, Elsevier, vol. 28(5), pages 727-742.
    6. Sopian, Kamaruzzaman & Ibrahim, Mohd Zamri & Wan Daud, Wan Ramli & Othman, Mohd Yusof & Yatim, Baharuddin & Amin, Nowshad, 2009. "Performance of a PV–wind hybrid system for hydrogen production," Renewable Energy, Elsevier, vol. 34(8), pages 1973-1978.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    2. Li, Canbing & Shi, Haiqing & Cao, Yijia & Wang, Jianhui & Kuang, Yonghong & Tan, Yi & Wei, Jing, 2015. "Comprehensive review of renewable energy curtailment and avoidance: A specific example in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1067-1079.
    3. Athari, M.H. & Ardehali, M.M., 2016. "Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller," Renewable Energy, Elsevier, vol. 85(C), pages 890-902.
    4. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    5. Alanne, Kari & Cao, Sunliang, 2017. "Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 697-711.
    6. Mohammadi, Zahra & Hoes, Pieter Jan & Hensen, Jan L.M., 2020. "Simulation-based design optimization of houses with low grid dependency," Renewable Energy, Elsevier, vol. 157(C), pages 1185-1202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    2. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    3. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    4. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    5. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Juan C. Vasquez & Josep M. Guerrero, 2018. "Energy Storage Systems for Shipboard Microgrids—A Review," Energies, MDPI, vol. 11(12), pages 1-32, December.
    8. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    9. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
    10. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    11. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    12. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    13. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    14. Osmani, Atif & Zhang, Jun, 2014. "Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties," Energy, Elsevier, vol. 70(C), pages 514-528.
    15. Pei, Pucheng & Wang, Keliang & Ma, Ze, 2014. "Technologies for extending zinc–air battery’s cyclelife: A review," Applied Energy, Elsevier, vol. 128(C), pages 315-324.
    16. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    17. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    18. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    19. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Domínguez-Navarro, José A., 2009. "Generation management using batteries in wind farms: Economical and technical analysis for Spain," Energy Policy, Elsevier, vol. 37(1), pages 126-139, January.
    20. Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:1:p:197-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.