IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124009997.html
   My bibliography  Save this article

Valorization of cheese whey wastewater to achieve sustainable development goals

Author

Listed:
  • Tugume, Moses
  • Ibrahim, Mona G.
  • Nasr, Mahmoud

Abstract

While several studies have focused on managing cheese wastes for bioresource recovery in developing countries, assessing the techno-economic feasibility, carbon emissions, and sustainability performance of such systems is still to be determined. This research gap was addressed by designing a reliable cheese whey wastewater (CWW) management system that could recover biogas and biochar, followed by estimating the associated profits, net present values, and payback periods. Implementing this system to treat 1 m3 CWW with a chemical oxygen demand (COD) of 56.2 g/L could generate bio-CH4 (8.71 m3), biochar (1.21 kg), pyro-oil (1.99 kg), and syngas (0.31 kg) while self-consuming about half the energy produced. The revenues of carbon credit, COD shadow price, electricity, and biochar could maintain a 6.1-year payback period and a 10.15 % internal rate of return. The environmental benefits could recoup the annual expenses accompanied by biogas/biochar utilization in agricultural, energy, and field applications, demonstrating that the system's profitability criteria were less sensitive to variations in operational costs. Although the CO2-equivalent emissions represented significant environmental burdens, the green credit of biogenic CWW could endorse the life cycle assessment's mid-point and end-point categories. Ensuring clean water and affordable energy, recovering biochar as an enriched soil amendment, and enabling policies/finances by the proposed CWW valorization approach could fulfill sustainable development goals 6, 7, and 13 in low-income nations. Future studies are required to optimize the anaerobic digestion and pyrolysis operating parameters using machine learning techniques, reducing the running costs and improving the minimum selling prices of biofuel recovery from CWW.

Suggested Citation

  • Tugume, Moses & Ibrahim, Mona G. & Nasr, Mahmoud, 2025. "Valorization of cheese whey wastewater to achieve sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009997
    DOI: 10.1016/j.rser.2024.115273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Namahoro, J.P. & Wu, Q. & Zhou, N. & Xue, S., 2021. "Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. M. Samer & E. M. Abdelsalam & S. Mohamed & H. Elsayed & Y. Attia, 2022. "Impact of photoactivated cobalt oxide nanoparticles addition on manure and whey for biogas production through dry anaerobic co-digestion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7776-7793, June.
    4. Prazeres, Ana R. & Rivas, Javier & Almeida, Maria Adelaide & Patanita, Manuel & Dôres, Jóse & Carvalho, Fátima, 2016. "Agricultural reuse of cheese whey wastewater treated by NaOH precipitation for tomato production under several saline conditions and sludge management," Agricultural Water Management, Elsevier, vol. 167(C), pages 62-74.
    5. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    6. Muhammad, Bashir, 2019. "Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries," Energy, Elsevier, vol. 179(C), pages 232-245.
    7. World Bank, 2017. "State of Electricity Access Report 2017," World Bank Publications - Reports 26646, The World Bank Group.
    8. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.
    10. World Bank, 2022. "Global Economic Prospects, June 2022," World Bank Publications - Books, The World Bank Group, number 37224, April.
    11. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    12. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    13. World Bank, 2022. "Global Economic Prospects, January 2022," World Bank Publications - Books, The World Bank Group, number 36519, April.
    14. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    15. Néméhie Lawson & Merlin Alvarado-Morales & Panagiotis Tsapekos & Irini Angelidaki, 2021. "Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants," Energies, MDPI, vol. 14(24), pages 1-18, December.
    16. Stefano Papirio & Silvio Matassa & Francesco Pirozzi & Giovanni Esposito, 2020. "Anaerobic Co-Digestion of Cheese Whey and Industrial Hemp Residues Opens New Perspectives for the Valorization of Agri-Food Waste," Energies, MDPI, vol. 13(11), pages 1-13, June.
    17. Bolen, T.J. & Hasan, Mahmudul & Conway, Timothy & Stéphane Yaméogo, Djigui David & Sanchez, Pablo & Rahman, Arifur & Azam, Hossain, 2022. "Feasibility assessment of biogas production from the anaerobic co-digestion of cheese whey, grease interceptor waste and pulped food waste for WRRF," Energy, Elsevier, vol. 254(PA).
    18. Giuseppe Lembo & Antonella Signorini & Antonella Marone & Claudio Carbone & Alessandro Agostini, 2022. "Hydrogen and Methane Production by Single- and Two-Stage Anaerobic Digestion of Second Cheese Whey: Economic Performances and GHG Emissions Evaluation," Energies, MDPI, vol. 15(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Andree,Bo Pieter Johannes & Pape,Utz Johann, 2023. "Machine Learning Imputation of High Frequency Price Surveys in Papua New Guinea," Policy Research Working Paper Series 10559, The World Bank.
    3. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Olamide Ebenezer G & Daisi, F.T., 2025. "A Multivariate Analysis of Variance Approach to Business Success Factors of SMEs in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 9(14), pages 161-173, January.
    5. Obobisa, Emma Serwaa & Chen, Haibo & Mensah, Isaac Adjei, 2022. "The impact of green technological innovation and institutional quality on CO2 emissions in African countries," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    6. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    7. Arroyo Marioli,Francisco & Vegh,Carlos A., 2023. "Fiscal Procyclicality in Commodity Exporting Countries : How Much Does It Pour andWhy ?," Policy Research Working Paper Series 10428, The World Bank.
    8. Jonathan D Moyer & Willem Verhagen & Brendan Mapes & David K Bohl & Yutang Xiong & Vivian Yang & Kaylin McNeil & José Solórzano & Mohammod Irfan & Cade Carter & Barry B Hughes, 2022. "How many people is the COVID-19 pandemic pushing into poverty? A long-term forecast to 2050 with alternative scenarios," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-21, July.
    9. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Kim, Won Joong & Ko, Juyoung & Kwon, Won Soon & Piao, Chunyan, 2025. "Time-varying sources of fluctuations in global inflation," Economic Modelling, Elsevier, vol. 143(C).
    11. Hamilton, Calumn & de Vries, Gaaitzen J., 2025. "The structural transformation of transition economies," World Development, Elsevier, vol. 191(C).
    12. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    13. Wu, Benteng & Lin, Richen & Bose, Archishman & Huerta, Jorge Diaz & Kang, Xihui & Deng, Chen & Murphy, Jerry D., 2023. "Economic and environmental viability of biofuel production from organic wastes: A pathway towards competitive carbon neutrality," Energy, Elsevier, vol. 285(C).
    14. Song, Jinghui & Wang, Ying & Zhang, Siqi & Song, Yanling & Xue, Shengrong & Liu, Le & Lvy, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2021. "Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    16. repec:ocp:ppaper:pb18-22 is not listed on IDEAS
    17. Yu, Xiunan & Zhang, Congguang & Qiu, Ling & Yao, Yiqing & Sun, Guotao & Guo, Xiaohui, 2020. "Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2484-2493.
    18. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    19. Wang, Shule & Yang, Hanmin & Shi, Ziyi & Zaini, Ilman Nuran & Wen, Yuming & Jiang, Jianchun & Jönsson, Pär Göran & Yang, Weihong, 2022. "Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept," Energy, Elsevier, vol. 252(C).
    20. Mark Shevlin & Enya Redican & Philip Hyland & Sarah Butter & Orla McBride & Todd K Hartman & Jamie Murphy & Frédérique Vallières & Richard P Bentall, 2022. "Perceived manageability of debt and mental health during the COVID-19 pandemic: A UK population analysis," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-13, September.
    21. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.