IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v158y2022ics1364032122001125.html
   My bibliography  Save this article

The impact of COVID -19 on offshore wind project productivity – A case study

Author

Listed:
  • Lerche, J.
  • Lorentzen, S.
  • Enevoldsen, P.
  • Neve, H.H.

Abstract

This study investigated productivity in an offshore wind project to understand the distribution of their value-adding and non-value-adding hours. A comprehensive literature review presented results on productivity in regular mega-projects, revealing a limited knowledge of offshore wind projects. From the first quarter of 2019 to the early second quarter of 2020, 62,447 realized activities, equaling 213,786 h, were sampled from a wind farm development project in the British sector of the North Sea. This data was then analyzed and presented through a descriptive statistic. The results showed a distribution of 21.21% value-adding (VA) and 50.09% non-value-adding (NVA) hours. With 20.9% of the total hours, the weather is the dominant cause of waiting time, followed by vessels and previous tasks. The findings further show the disruptions of the COVID-19 pandemic and its effects on productivity. It supports and expands on existing knowledge of causes for waiting time in offshore wind projects, ultimately providing the industry with an understanding of areas that need development to enhance productivity. The paper contributes to current knowledge by providing an understanding of productivity in offshore wind projects.

Suggested Citation

  • Lerche, J. & Lorentzen, S. & Enevoldsen, P. & Neve, H.H., 2022. "The impact of COVID -19 on offshore wind project productivity – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122001125
    DOI: 10.1016/j.rser.2022.112188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2019. "Global levelised cost of electricity from offshore wind," Energy, Elsevier, vol. 189(C).
    2. Markard, Jochen & Petersen, Regula, 2009. "The offshore trend: Structural changes in the wind power sector," Energy Policy, Elsevier, vol. 37(9), pages 3545-3556, September.
    3. Mehrdad Arashpour & Amin Heidarpour & Ali Akbar Nezhad & Zahra Hosseinifard & Nicholas Chileshe & Reza Hosseini, 2020. "Performance-based control of variability and tolerance in off-site manufacture and assembly: optimization of penalty on poor production quality," Construction Management and Economics, Taylor & Francis Journals, vol. 38(6), pages 502-514, June.
    4. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2017. "Minimizing transportation and installation costs for turbines in offshore wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 667-679.
    5. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    6. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    7. Yongwei Shan & Paul Goodrum & Dong Zhai & Carl Haas & Carlos Caldas, 2011. "The impact of management practices on mechanical construction productivity," Construction Management and Economics, Taylor & Francis Journals, vol. 29(3), pages 305-316.
    8. Barrows, S.E. & Homer, J.S. & Orrell, A.C., 2021. "Valuing wind as a distributed energy resource: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Yusen Ye & Wen Jiao & Hong Yan, 2020. "Managing Relief Inventories Responding to Natural Disasters: Gaps Between Practice and Literature," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 807-832, April.
    10. Jie Gong & John D. Borcherding & Carlos H. Caldas, 2011. "Effectiveness of craft time utilization in construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 29(7), pages 737-751, June.
    11. Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Chandra Ade Irawan & Negar Akbari & Dylan F. Jones & David Menachof, 2018. "A combined supply chain optimisation model for the installation phase of offshore wind projects," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1189-1207, February.
    13. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    14. Abbas Hassan & Khaled El-Rayes, 2020. "Quantifying the interruption impact of activity delays in non-serial repetitive construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 38(6), pages 515-533, June.
    15. Ursavas, Evrim, 2017. "A benders decomposition approach for solving the offshore wind farm installation planning at the North Sea," European Journal of Operational Research, Elsevier, vol. 258(2), pages 703-714.
    16. William Ho & Tian Zheng & Hakan Yildiz & Srinivas Talluri, 2015. "Supply chain risk management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(16), pages 5031-5069, August.
    17. Revans, RW, 1983. "Manufacturing productivity," Omega, Elsevier, vol. 11(6), pages 523-535.
    18. Tsao, Yu-Chung & Thanh, Vo-Van & Chang, Yi-Ying & Wei, Hsi-Hsien, 2021. "COVID-19: Government subsidy models for sustainable energy supply with disruption risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Arshi Shakeel Faridi & Sameh Monir El-Sayegh, 2006. "Significant factors causing delay in the UAE construction industry," Construction Management and Economics, Taylor & Francis Journals, vol. 24(11), pages 1167-1176.
    20. Peter Kaming & Paul Olomolaiye & Gary Holt & Frank Harris, 1997. "Factors influencing construction time and cost overruns on high-rise projects in Indonesia," Construction Management and Economics, Taylor & Francis Journals, vol. 15(1), pages 83-94.
    21. Soares-Ramos, Emanuel P.P. & de Oliveira-Assis, Lais & Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M., 2020. "Current status and future trends of offshore wind power in Europe," Energy, Elsevier, vol. 202(C).
    22. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.
    23. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    24. Murphy, C.A. & Schleifer, A. & Eurek, K., 2021. "A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    25. Rafael Sacks & Olli Seppänen & Vitaliy Priven & Jonathan Savosnick, 2017. "Construction flow index: a metric of production flow quality in construction," Construction Management and Economics, Taylor & Francis Journals, vol. 35(1-2), pages 45-63, February.
    26. Thomas Poulsen & Charlotte Bay Hasager & Christian Munk Jensen, 2017. "The Role of Logistics in Practical Levelized Cost of Energy Reduction Implementation and Government Sponsored Cost Reduction Studies: Day and Night in Offshore Wind Operations and Maintenance Logistic," Energies, MDPI, vol. 10(4), pages 1-28, April.
    27. Irawan, Chandra Ade & Eskandarpour, Majid & Ouelhadj, Djamila & Jones, Dylan, 2021. "Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 289(3), pages 912-926.
    28. Belhadi, Amine & Kamble, Sachin & Jabbour, Charbel Jose Chiappetta & Gunasekaran, Angappa & Ndubisi, Nelson Oly & Venkatesh, Mani, 2021. "Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    29. Enevoldsen, Peter & Valentine, Scott Victor & Sovacool, Benjamin K., 2018. "Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development," Energy Policy, Elsevier, vol. 120(C), pages 1-7.
    30. Michael Gibbert & Winfried Ruigrok & Barbara Wicki, 2008. "What passes as a rigorous case study?," Strategic Management Journal, Wiley Blackwell, vol. 29(13), pages 1465-1474, December.
    31. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    32. Lacal-Arántegui, Roberto & Yusta, José M. & Domínguez-Navarro, José Antonio, 2018. "Offshore wind installation: Analysing the evidence behind improvements in installation time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 133-145.
    33. Christian Koch, 2012. "Contested overruns and performance of offshore wind power plants," Construction Management and Economics, Taylor & Francis Journals, vol. 30(8), pages 609-622, April.
    34. Barlow, Euan & Tezcaner Öztürk, Diclehan & Revie, Matthew & Akartunalı, Kerem & Day, Alexander H. & Boulougouris, Evangelos, 2018. "A mixed-method optimisation and simulation framework for supporting logistical decisions during offshore wind farm installations," European Journal of Operational Research, Elsevier, vol. 264(3), pages 894-906.
    35. Goutom K. Pall & Adrian J. Bridge & Jason Gray & Martin Skitmore, 2019. "Causes of Delay in Power Transmission Projects: An Empirical Study," Energies, MDPI, vol. 13(1), pages 1-29, December.
    36. González, Mario Orestes Aguirre & Santiso, Andressa Medeiros & Melo, David Cassimiro de & Vasconcelos, Rafael Monteiro de, 2020. "Regulation for offshore wind power development in Brazil," Energy Policy, Elsevier, vol. 145(C).
    37. Allan, Grant & Comerford, David & Connolly, Kevin & McGregor, Peter & Ross, Andrew G., 2020. "The economic and environmental impacts of UK offshore wind development: The importance of local content," Energy, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tjaberings, Jorick & Fazi, Stefano & Ursavas, Evrim, 2022. "Evaluating operational strategies for the installation of offshore wind turbine substructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Santhakumar, Srinivasan & Smart, Gavin & Noonan, Miriam & Meerman, Hans & Faaij, André, 2022. "Technological progress observed for fixed-bottom offshore wind in the EU and UK," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    4. Chandra Ade Irawan & Graham Wall & Dylan Jones, 2019. "An optimisation model for scheduling the decommissioning of an offshore wind farm," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 513-548, June.
    5. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    7. Basem Al Khatib & Yap Soon Poh & Ahmed El-Shafie, 2018. "Delay Factors in Reconstruction Projects: A Case Study of Mataf Expansion Project," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    8. Leonardo de Assis Santos & Leonardo Marques, 2022. "Big data analytics for supply chain risk management: research opportunities at process crossroads," Post-Print hal-03766121, HAL.
    9. Rubio-Domingo, G. & Linares, P., 2021. "The future investment costs of offshore wind: An estimation based on auction results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Lingqian Meng & Hongyan Ding, 2022. "Experimental Study on the Contact Force between the Vessel and CBF in the Integrated Floating Transportation Process of Offshore Wind Power," Energies, MDPI, vol. 15(21), pages 1-10, October.
    11. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    12. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    13. Daniel Rippel & Fatemeh Abasian Foroushani & Michael Lütjen & Michael Freitag, 2021. "A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions," Energies, MDPI, vol. 14(21), pages 1-21, October.
    14. Belhadi, Amine & Kamble, Sachin S. & Venkatesh, Mani & Chiappetta Jabbour, Charbel Jose & Benkhati, Imane, 2022. "Building supply chain resilience and efficiency through additive manufacturing: An ambidextrous perspective on the dynamic capability view," International Journal of Production Economics, Elsevier, vol. 249(C).
    15. Thomas Poulsen & Charlotte Bay Hasager, 2017. "The (R)evolution of China: Offshore Wind Diffusion," Energies, MDPI, vol. 10(12), pages 1-32, December.
    16. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Taylor, James W. & Jeon, Jooyoung, 2018. "Probabilistic forecasting of wave height for offshore wind turbine maintenance," European Journal of Operational Research, Elsevier, vol. 267(3), pages 877-890.
    19. Ladenburg, Jacob & Skotte, Maria, 2022. "Heterogeneity in willingness to pay for the location of offshore wind power development: An application of the willingness to pay space model," Energy, Elsevier, vol. 241(C).
    20. Stephan Oelker & Aljoscha Sander & Markus Kreutz & Abderrahim Ait-Alla & Michael Freitag, 2021. "Evaluation of the Impact of Weather-Related Limitations on the Installation of Offshore Wind Turbine Towers," Energies, MDPI, vol. 14(13), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122001125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.