IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v41y2019i2d10.1007_s00291-019-00546-z.html
   My bibliography  Save this article

An optimisation model for scheduling the decommissioning of an offshore wind farm

Author

Listed:
  • Chandra Ade Irawan

    (University of Nottingham Ningbo China)

  • Graham Wall

    (University of Portsmouth)

  • Dylan Jones

    (University of Portsmouth)

Abstract

An optimisation model is proposed for scheduling the decommissioning of an offshore wind farm in order to minimise the total cost which is comprised of jack-up vessel, barge (transfer) vessel, inventory, processing and on-land transportation costs. This paper also presents a comprehensive review of the strategic issues relating to the decommissioning process and of scheduling models that have been applied to offshore wind farms. A mathematical model using integer linear programming is developed to determine the optimal schedule considering several constraints such as the availability of vessels and planning delays. As the decommissioning problem is challenging to solve, a matheuristic approach based on the hybridisation of a heuristic approach and an exact method is also proposed to find near optimal solutions for a test set of problems. A set of computational experiments has been carried out to assess the proposed approach.

Suggested Citation

  • Chandra Ade Irawan & Graham Wall & Dylan Jones, 2019. "An optimisation model for scheduling the decommissioning of an offshore wind farm," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 513-548, June.
  • Handle: RePEc:spr:orspec:v:41:y:2019:i:2:d:10.1007_s00291-019-00546-z
    DOI: 10.1007/s00291-019-00546-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-019-00546-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-019-00546-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2017. "Minimizing transportation and installation costs for turbines in offshore wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 667-679.
    2. Ursavas, Evrim, 2017. "A benders decomposition approach for solving the offshore wind farm installation planning at the North Sea," European Journal of Operational Research, Elsevier, vol. 258(2), pages 703-714.
    3. Stefan Schwerdfeger & Nils Boysen & Dirk Briskorn, 2018. "Just-in-time logistics for far-distant suppliers: scheduling truck departures from an intermediate cross-docking terminal," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 1-21, January.
    4. Barlow, Euan & Tezcaner Öztürk, Diclehan & Revie, Matthew & Akartunalı, Kerem & Day, Alexander H. & Boulougouris, Evangelos, 2018. "A mixed-method optimisation and simulation framework for supporting logistical decisions during offshore wind farm installations," European Journal of Operational Research, Elsevier, vol. 264(3), pages 894-906.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tjaberings, Jorick & Fazi, Stefano & Ursavas, Evrim, 2022. "Evaluating operational strategies for the installation of offshore wind turbine substructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Noor Amila Wan Abdullah Zawawi & Kamaluddeen Usman Danyaro & M. S. Liew & Lim Eu Shawn, 2023. "Environmental Sustainability and Efficiency of Offshore Platform Decommissioning: A Review," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    3. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Daniel Rippel & Fatemeh Abasian Foroushani & Michael Lütjen & Michael Freitag, 2021. "A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions," Energies, MDPI, vol. 14(21), pages 1-21, October.
    5. Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), 2020. "Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability," Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management, volume 30, number 30.
    6. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    7. Rippel, Daniel & Peng, Shengrui & Lütjen, Michael & Sczcerbicka, Helena & Freitag, Michael, 2020. "Model transformation framework for scheduling offshore logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 521-552, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lerche, J. & Lorentzen, S. & Enevoldsen, P. & Neve, H.H., 2022. "The impact of COVID -19 on offshore wind project productivity – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Tjaberings, Jorick & Fazi, Stefano & Ursavas, Evrim, 2022. "Evaluating operational strategies for the installation of offshore wind turbine substructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Daniel Rippel & Fatemeh Abasian Foroushani & Michael Lütjen & Michael Freitag, 2021. "A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions," Energies, MDPI, vol. 14(21), pages 1-21, October.
    4. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    5. Bingtao Quan & Sujian Li & Kuo-Jui Wu, 2022. "Optimizing the Vehicle Scheduling Problem for Just-in-Time Delivery Considering Carbon Emissions and Atmospheric Particulate Matter," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    6. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Dulebenets, Maxim A., 2019. "A Delayed Start Parallel Evolutionary Algorithm for just-in-time truck scheduling at a cross-docking facility," International Journal of Production Economics, Elsevier, vol. 212(C), pages 236-258.
    8. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    9. Taylor, James W. & Jeon, Jooyoung, 2018. "Probabilistic forecasting of wave height for offshore wind turbine maintenance," European Journal of Operational Research, Elsevier, vol. 267(3), pages 877-890.
    10. Stephan Oelker & Aljoscha Sander & Markus Kreutz & Abderrahim Ait-Alla & Michael Freitag, 2021. "Evaluation of the Impact of Weather-Related Limitations on the Installation of Offshore Wind Turbine Towers," Energies, MDPI, vol. 14(13), pages 1-12, June.
    11. Parkison, Sara B. & Kempton, Willett, 2022. "Marshaling ports required to meet US policy targets for offshore wind power," Energy Policy, Elsevier, vol. 163(C).
    12. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Sang, Le Quang & Takao, Maeda & Kamada, Yasunari & Li, Qing'an, 2017. "Experimental investigation of the cyclic pitch control on a horizontal axis wind turbine in diagonal inflow wind condition," Energy, Elsevier, vol. 134(C), pages 269-278.
    14. Imen Hamdi & Imen Boujneh, 2022. "Particle swarm optimization based-algorithms to solve the two-machine cross-docking flow shop problem: just in time scheduling," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 947-969, September.
    15. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
    17. Lingqian Meng & Hongyan Ding, 2022. "Experimental Study on the Contact Force between the Vessel and CBF in the Integrated Floating Transportation Process of Offshore Wind Power," Energies, MDPI, vol. 15(21), pages 1-10, October.
    18. Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).
    19. Maria Giuffrida & Riccardo Mangiaracina & Umar Burki, 2021. "Cloud-Based Booking Platforms in Warehouse Operations," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    20. Oluwatosin Theophilus & Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2019. "Truck Scheduling at Cross-Docking Terminals: A Follow-Up State-Of-The-Art Review," Sustainability, MDPI, vol. 11(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:41:y:2019:i:2:d:10.1007_s00291-019-00546-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.