IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v150y2021ics1364032121007735.html
   My bibliography  Save this article

Societal cost-benefit analysis of electric vehicles in the Philippines with the inclusion of impacts to balance of payments

Author

Listed:
  • Lopez, Neil Stephen
  • Tria, Lew Andrew
  • Tayo, Leo Allen
  • Cruzate, Rovinna Janel
  • Oppus, Carlos
  • Cabacungan, Paul
  • Isla, Igmedio
  • Ansay, Arjun
  • Garcia, Teodinis
  • Cabarrubias-Dela Cruz, Kevien
  • Biona, Jose Bienvenido Manuel

Abstract

Countries globally have committed to deploy electric vehicles immensely within the decade. However, these deployments at an early stage come at a huge cost to governments. The high ownership costs of electric vehicles require them to be supported by subsidies, tax exemptions and other incentives – not to mention the costs of installing new charging infrastructure. Several cost-benefit studies have looked into various components, and this present work aims to contribute to the literature by estimating the impact to the country's trade deficit or surplus. While ownership cost parity between electric vehicles and internal combustion vehicles might be farfetched, the modeling results in this study show that electric vehicles can achieve societal cost-benefit parity with internal combustion vehicles within the decade. This finding can provide a strong justification for subsidies and incentives provided to electric vehicles. To conclude, the authors provide some policy implications supporting the local production of electric vehicles.

Suggested Citation

  • Lopez, Neil Stephen & Tria, Lew Andrew & Tayo, Leo Allen & Cruzate, Rovinna Janel & Oppus, Carlos & Cabacungan, Paul & Isla, Igmedio & Ansay, Arjun & Garcia, Teodinis & Cabarrubias-Dela Cruz, Kevien &, 2021. "Societal cost-benefit analysis of electric vehicles in the Philippines with the inclusion of impacts to balance of payments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007735
    DOI: 10.1016/j.rser.2021.111492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121007735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fredrik Carlsson & Olof Johansson-Stenman, 2003. "Costs and Benefits of Electric Vehicles," Journal of Transport Economics and Policy, University of Bath, vol. 37(1), pages 1-28, January.
    2. Mukherjee, Sanghamitra Chattopadhyay & Ryan, Lisa, 2020. "Factors influencing early battery electric vehicle adoption in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Han Hao & Yong Geng & James E. Tate & Feiqi Liu & Kangda Chen & Xin Sun & Zongwei Liu & Fuquan Zhao, 2019. "Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.
    5. Ito, Yutaka & Managi, Shunsuke, 2015. "The potential of alternative fuel vehicles: A cost-benefit analysis," Research in Transportation Economics, Elsevier, vol. 50(C), pages 39-50.
    6. Xingping Zhang & Rao Rao, 2016. "A Benefit Analysis of Electric Vehicle Battery Swapping and Leasing Modes in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(6), pages 1414-1426, June.
    7. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    8. Zito, Pietro & Salerno, Silvia, 2004. "Potential demand and cost-benefit analysis of electric cars," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 27, pages 1-14.
    9. Katharine Ricke & Laurent Drouet & Ken Caldeira & Massimo Tavoni, 2018. "Country-level social cost of carbon," Nature Climate Change, Nature, vol. 8(10), pages 895-900, October.
    10. Massiani, Jérôme, 2015. "Cost-Benefit Analysis of policies for the development of electric vehicles in Germany: Methods and results," Transport Policy, Elsevier, vol. 38(C), pages 19-26.
    11. Karabasoglu, Orkun & Michalek, Jeremy, 2013. "Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains," Energy Policy, Elsevier, vol. 60(C), pages 445-461.
    12. Li, Lin & Dababneh, Fadwa & Zhao, Jing, 2018. "Cost-effective supply chain for electric vehicle battery remanufacturing," Applied Energy, Elsevier, vol. 226(C), pages 277-286.
    13. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    14. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    15. Choi, Wonjae & Song, Han Ho, 2018. "Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study," Applied Energy, Elsevier, vol. 230(C), pages 135-147.
    16. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Policy mechanisms to accelerate electric vehicle adoption: A qualitative review from the Nordic region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 719-731.
    17. Carley, Sanya & Zirogiannis, Nikolaos & Siddiki, Saba & Duncan, Denvil & Graham, John D., 2019. "Overcoming the shortcomings of U.S. plug-in electric vehicle policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Hardman, Scott & Chandan, Amrit & Tal, Gil & Turrentine, Tom, 2017. "The effectiveness of financial purchase incentives for battery electric vehicles – A review of the evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1100-1111.
    19. Delucchi, Mark & Lipman, Timothy, 2001. "An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt50q9060k, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    2. Yu, Yadong & Guo, Ying & Ma, Tieju, 2023. "Prioritizing the hydrogen pathways for fuel cell vehicles: Analysis of the life-cycle environmental impact, economic cost, and environmental efficiency," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    2. Santos, Georgina & Rembalski, Sebastian, 2021. "Do electric vehicles need subsidies in the UK?," Energy Policy, Elsevier, vol. 149(C).
    3. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    4. Zhongqi Deng & Peng Tian, 2020. "Are China's subsidies for electric vehicles effective?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 475-489, June.
    5. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    6. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    7. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    8. Burra, Lavan T. & Sommer, Stephan & Vance, Colin, 2023. "Free-Ridership in Subsidies for Company- and Private Electric Vehicles," Ruhr Economic Papers 1015, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    9. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Anna Kiziltan & Mustafa Kiziltan & Shihomi Ara Aksoy & Merih Aydınalp Köksal & Ş. Elçin Tekeli & Nilhan Duran & S. Yeşer Aslanoğlu & Fatma Öztürk & Nazan Özyürek & Pervin Doğan & Ağça Gül Yılmaz & Can, 2023. "Cost–benefit analysis of road-transport policy options to combat air pollution in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10765-10798, October.
    11. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    12. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    13. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Rostad Sæther, Simen, 2022. "Mobility at the crossroads – Electric mobility policy and charging infrastructure lessons from across Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 144-159.
    15. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
    16. Du, Jiuyu & Li, Feiqiang & Li, Jianqiu & Wu, Xiaogang & Song, Ziyou & Zou, Yunfei & Ouyang, Minggao, 2019. "Evaluating the technological evolution of battery electric buses: China as a case," Energy, Elsevier, vol. 176(C), pages 309-319.
    17. Li, Lixu & Wang, Zhiqiang & Xie, Xiaoqing, 2022. "From government to market? A discrete choice analysis of policy instruments for electric vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 143-159.
    18. Held, Tobias & Gerrits, Lasse, 2019. "On the road to electrification – A qualitative comparative analysis of urban e-mobility policies in 15 European cities," Transport Policy, Elsevier, vol. 81(C), pages 12-23.
    19. Almeida Neves, Sónia & Cardoso Marques, António & Alberto Fuinhas, José, 2019. "Technological progress and other factors behind the adoption of electric vehicles: Empirical evidence for EU countries," Research in Transportation Economics, Elsevier, vol. 74(C), pages 28-39.
    20. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.