IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i8p1870-1883.html
   My bibliography  Save this article

Building energy research in Hong Kong: A review

Author

Listed:
  • Ma, Zhenjun
  • Wang, Shengwei

Abstract

Hong Kong is located in a typical subtropical region. The buildings in Hong Kong are subjected to high cooling demands for their air-conditioning systems throughout most of the year, and their contribution toward the total energy consumption is about 40%. Therefore, energy efficiency in buildings is essential to reduce the global energy use and improve the local environmental sustainability. This paper provides an overall review of the building energy research and efforts in Hong Kong over the last decade. Various aspects and energy saving measures, including energy policy, energy audit, design, control, diagnosis, building performance evaluation and renewable energy systems, studied or used to enhance the energy efficiency in buildings are reviewed. A brief introduction of the Hong Kong Building Energy Codes (BEC) and Hong Kong Building Environmental Assessment Method (HK-BEAM) are also provided to present the efforts of the local government and community on energy efficiency in buildings. This review aims at providing building researchers and practitioners a better understanding of buildings energy saving opportunities and approaches in cities particularly in subtropical regions and taking further proper actions to promote buildings energy efficiency and conservation.

Suggested Citation

  • Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1870-1883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00018-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Zhenjun & Wang, Shengwei & Xiao, Fu, 2009. "Online performance evaluation of alternative control strategies for building cooling water systems prior to in situ implementation," Applied Energy, Elsevier, vol. 86(5), pages 712-721, May.
    2. Li, D.H.W. & Lam, J.C. & Wong, S.L., 2005. "Daylighting and its effects on peak load determination," Energy, Elsevier, vol. 30(10), pages 1817-1831.
    3. Li, Danny H.W. & Wong, S.L., 2007. "Daylighting and energy implications due to shading effects from nearby buildings," Applied Energy, Elsevier, vol. 84(12), pages 1199-1209, December.
    4. Wan, K. S. Y. & Yik, F. W. H., 2004. "Building design and energy end-use characteristics of high-rise residential buildings in Hong Kong," Applied Energy, Elsevier, vol. 78(1), pages 19-36, May.
    5. Chow, T. T. & Chan, Apple L. S. & Song, C. L., 2004. "Building-mix optimization in district cooling system implementation," Applied Energy, Elsevier, vol. 77(1), pages 1-13, January.
    6. Wan, Kevin K.W. & Tang, H.L. & Yang, Liu & Lam, Joseph C., 2008. "An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks," Energy, Elsevier, vol. 33(7), pages 1115-1127.
    7. Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
    8. Lee, C.K. & Lam, H.N., 2008. "Computer simulation of borehole ground heat exchangers for geothermal heat pump systems," Renewable Energy, Elsevier, vol. 33(6), pages 1286-1296.
    9. Lam, Joseph C. & Wan, Kevin K.W. & Lau, Chris C.S. & Yang, Liu, 2008. "Climatic influences on solar modelling in China," Renewable Energy, Elsevier, vol. 33(7), pages 1591-1604.
    10. Lee, W. L. & Yik, F. W. H., 2002. "Regulatory and voluntary approaches for enhancing energy efficiencies of buildings in Hong Kong," Applied Energy, Elsevier, vol. 71(4), pages 251-274, April.
    11. Li, Danny H.W. & Lam, Joseph C. & Lau, Chris C.S., 2002. "A new approach for predicting vertical global solar irradiance," Renewable Energy, Elsevier, vol. 25(4), pages 591-606.
    12. Mui, K.W. & Wong, L.T. & Law, L.Y., 2007. "An energy benchmarking model for ventilation systems of air-conditioned offices in subtropical climates," Applied Energy, Elsevier, vol. 84(1), pages 89-98, January.
    13. Li, Danny H.W. & Lau, Chris C.S. & Lam, Joseph C., 2005. "Predicting daylight illuminance on inclined surfaces using sky luminance data," Energy, Elsevier, vol. 30(9), pages 1649-1665.
    14. Li, D.H.W & Lam, J.C & Wong, S.L, 2002. "Daylighting and its implications to overall thermal transfer value (OTTV) determinations," Energy, Elsevier, vol. 27(11), pages 991-1008.
    15. Wang, Shengwei & Cui, Jingtan, 2005. "Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method," Applied Energy, Elsevier, vol. 82(3), pages 197-213, November.
    16. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
    17. Chow, W.K. & Yu, Philip C.H., 2000. "Controlling building energy use by Overall Thermal Transfer Value (OTTV)," Energy, Elsevier, vol. 25(5), pages 463-478.
    18. Li, Hong & Yang, Hongxing, 2009. "Potential application of solar thermal systems for hot water production in Hong Kong," Applied Energy, Elsevier, vol. 86(2), pages 175-180, February.
    19. Yik, F.W.H & Wan, K.S.Y, 2005. "An evaluation of the appropriateness of using overall thermal transfer value (OTTV) to regulate envelope energy performance of air-conditioned buildings," Energy, Elsevier, vol. 30(1), pages 41-71.
    20. Chow, W. K. & Fong, S. K., 1997. "Simulation of energy use for single-compartment buildings in Hong Kong," Applied Energy, Elsevier, vol. 57(1), pages 37-44, May.
    21. Lee, W. L. & Yik, F. W. H. & Jones, P. & Burnett, J., 2001. "Energy saving by realistic design data for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 70(1), pages 59-75, September.
    22. Chow, T.T. & Fong, K.F. & Chan, A.L.S. & Lin, Z., 2006. "Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong," Applied Energy, Elsevier, vol. 83(1), pages 42-54, January.
    23. Wan, K. S. Y. & Yik, F. H. W., 2004. "Representative building design and internal load patterns for modelling energy use in residential buildings in Hong Kong," Applied Energy, Elsevier, vol. 77(1), pages 69-85, January.
    24. Chow, W. K. & Chan, K. T., 1995. "Parameterization study of the overall thermal-transfer value equation for buildings," Applied Energy, Elsevier, vol. 50(3), pages 247-268.
    25. Chan, K. T. & Chow, W. K., 1998. "Energy impact of commercial-building envelopes in the sub-tropical climate," Applied Energy, Elsevier, vol. 60(1), pages 21-39, May.
    26. Lam, Joseph C. & Tsang, C.L. & Li, Danny H.W. & Cheung, S.O., 2005. "Residential building envelope heat gain and cooling energy requirements," Energy, Elsevier, vol. 30(7), pages 933-951.
    27. Li, Danny H.W. & Lam, Tony N.T. & Cheung, K.L. & Tang, H.L., 2008. "An analysis of luminous efficacies under the CIE standard skies," Renewable Energy, Elsevier, vol. 33(11), pages 2357-2365.
    28. Yu, F.W. & Chan, K.T., 2008. "Optimization of water-cooled chiller system with load-based speed control," Applied Energy, Elsevier, vol. 85(10), pages 931-950, October.
    29. Li, Danny H.W. & Cheung, Gary H.W., 2005. "Study of models for predicting the diffuse irradiance on inclined surfaces," Applied Energy, Elsevier, vol. 81(2), pages 170-186, June.
    30. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2007. "A novel model for photovoltaic array performance prediction," Applied Energy, Elsevier, vol. 84(12), pages 1187-1198, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng, Weili & Zhang, Lin & Ridley, Ian, 2020. "The impact of minimum OTTV legislation on building energy consumption," Energy Policy, Elsevier, vol. 136(C).
    2. Al-Hadhrami, L.M., 2013. "Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 305-314.
    3. Fan, Cheng & Sun, Yongjun & Shan, Kui & Xiao, Fu & Wang, Jiayuan, 2018. "Discovering gradual patterns in building operations for improving building energy efficiency," Applied Energy, Elsevier, vol. 224(C), pages 116-123.
    4. Laura Kudrna & Georgios Kavetsos & Chloe Foy & Paul Dolan, 2016. "Without my Medal on my Mind: Counterfactual Thinking and Other Determinants of Athlete Emotions," Working Papers 66, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    5. Handing Guo & Wanzhen Qiao & Jiren Liu, 2019. "Dynamic Feedback Analysis of Influencing Factors of Existing Building Energy-Saving Renovation Market Based on System Dynamics in China," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    6. Zhang, Guiying & Tian, Changqing & Shao, Shuangquan, 2014. "Experimental investigation on adsorption and electro-osmosis regeneration of macroporous silica gel desiccant," Applied Energy, Elsevier, vol. 136(C), pages 1010-1017.
    7. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    8. Xie, Jing Chao & Xue, Peng & Mak, Cheuk Ming & Liu, Jia Ping, 2017. "Balancing energy and daylighting performances for envelope design: A new index and proposition of a case study in Hong Kong," Applied Energy, Elsevier, vol. 205(C), pages 13-22.
    9. Fossati, Michele & Scalco, Veridiana Atanasio & Linczuk, Vinícius Cesar Cadena & Lamberts, Roberto, 2016. "Building energy efficiency: An overview of the Brazilian residential labeling scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1216-1231.
    10. Li, Danny H.W. & Chau, T.C. & Wan, Kevin K.W., 2014. "A review of the CIE general sky classification approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 563-574.
    11. Li, Jun & Ng, S. Thomas & Skitmore, Martin, 2017. "Review of low-carbon refurbishment solutions for residential buildings with particular reference to multi-story buildings in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 393-407.
    12. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    13. Yung Yau & Huiying (Cynthia) Hou & Ka Chi Yip & Queena Kun Qian, 2021. "Transaction Cost and Agency Perspectives on Eco-Certification of Existing Buildings: A Study of Hong Kong," Energies, MDPI, vol. 14(19), pages 1-20, October.
    14. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    15. Xu, Biwan & Li, Zongjin, 2014. "Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material," Applied Energy, Elsevier, vol. 121(C), pages 114-122.
    16. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Roh, Seungjun & Tae, Sungho & Shin, Sungwoo, 2014. "Development of building materials embodied greenhouse gases assessment criteria and system (BEGAS) in the newly revised Korea Green Building Certification System (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 410-421.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.
    2. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    3. Li, Danny H.W. & Lou, Siwei & Lam, Joseph C. & Wu, Ronald H.T., 2016. "Determining solar irradiance on inclined planes from classified CIE (International Commission on Illumination) standard skies," Energy, Elsevier, vol. 101(C), pages 462-470.
    4. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    5. Li, Danny H.W. & Wong, S.L., 2007. "Daylighting and energy implications due to shading effects from nearby buildings," Applied Energy, Elsevier, vol. 84(12), pages 1199-1209, December.
    6. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    7. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    8. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    9. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.
    10. Yik, F.W.H & Wan, K.S.Y, 2005. "An evaluation of the appropriateness of using overall thermal transfer value (OTTV) to regulate envelope energy performance of air-conditioned buildings," Energy, Elsevier, vol. 30(1), pages 41-71.
    11. Radhi, H., 2009. "Can envelope codes reduce electricity and CO2 emissions in different types of buildings in the hot climate of Bahrain?," Energy, Elsevier, vol. 34(2), pages 205-215.
    12. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    13. Koo, Choongwan & Park, Sungki & Hong, Taehoon & Park, Hyo Seon, 2014. "An estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method," Applied Energy, Elsevier, vol. 115(C), pages 205-215.
    14. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    15. Yu, Philip C.H. & Chow, W.K., 2001. "Energy use in commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 69(4), pages 243-255, August.
    16. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    17. Probst, Oliver, 2004. "Cooling load of buildings and code compliance," Applied Energy, Elsevier, vol. 77(2), pages 171-186, February.
    18. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    19. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2020. "A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties," Applied Energy, Elsevier, vol. 280(C).
    20. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1870-1883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.