IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i5p712-721.html
   My bibliography  Save this article

Online performance evaluation of alternative control strategies for building cooling water systems prior to in situ implementation

Author

Listed:
  • Ma, Zhenjun
  • Wang, Shengwei
  • Xiao, Fu

Abstract

This paper presents the online test and evaluation of the performance of five practical control strategies (fixed set-point control method, fixed approach control method, two near optimal strategies and one optimal strategy) for building cooling water systems to identify the best strategy for future field validation. All of these strategies were tested and evaluated in a simulated virtual environment similar to the situation when they are actually implemented in practice. A virtual building system representing the real building and its central chilling system was developed and used to test the operational performance of the system controlled by different strategies. The packages of each control strategy are separately computed by the application program of Matlab, as the control optimizers to identify the necessary control settings for the given condition based on the collected operation data. The data exchanger between the virtual building system and the control optimizer was managed by a software platform through a communication interface. The results showed that the optimal control strategy is more energy efficient and cost effective than the other strategies, and its computational cost is manageable and can satisfy the requirements of practical applications. This strategy is being implemented in a super high-rise building for field validation.

Suggested Citation

  • Ma, Zhenjun & Wang, Shengwei & Xiao, Fu, 2009. "Online performance evaluation of alternative control strategies for building cooling water systems prior to in situ implementation," Applied Energy, Elsevier, vol. 86(5), pages 712-721, May.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:5:p:712-721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00141-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xue-feng & Liu, Jin-ping & Lu, Ji-dong & Liu, Lei & Zou, Wei, 2012. "Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference," Energy, Elsevier, vol. 40(1), pages 236-249.
    2. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    3. Tirmizi, Syed A. & Gandhidasan, P. & Zubair, Syed M., 2012. "Performance analysis of a chilled water system with various pumping schemes," Applied Energy, Elsevier, vol. 100(C), pages 238-248.
    4. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    5. Du, Zhimin & Jin, Xinqiao & Fang, Xing & Fan, Bo, 2016. "A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems," Applied Energy, Elsevier, vol. 183(C), pages 700-714.
    6. Du, Zhimin & Jin, Xinqiao & Fan, Bo, 2015. "Evaluation of operation and control in HVAC (heating, ventilation and air conditioning) system using exergy analysis method," Energy, Elsevier, vol. 89(C), pages 372-381.
    7. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    8. Wang, Yi-Fei & Chen, Qun, 2015. "A direct optimal control strategy of variable speed pumps in heat exchanger networks and experimental validations," Energy, Elsevier, vol. 85(C), pages 609-619.
    9. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    10. Ma, Zhenjun & Wang, Shengwei, 2011. "Enhancing the performance of large primary-secondary chilled water systems by using bypass check valve," Energy, Elsevier, vol. 36(1), pages 268-276.
    11. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    12. Xue, Xue & Wang, Shengwei & Yan, Chengchu & Cui, Borui, 2015. "A fast chiller power demand response control strategy for buildings connected to smart grid," Applied Energy, Elsevier, vol. 137(C), pages 77-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:5:p:712-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.