IDEAS home Printed from
   My bibliography  Save this article

Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China


  • Yu, Jinghua
  • Yang, Changzhi
  • Tian, Liwei
  • Liao, Dan


As a result of rapid economic growth in the last several decades, energy issue is becoming more and more important in today's world because of a possible energy shortage in the future; the usage of residential electricity has increased rapidly in China and building energy efficiency is included as one of the 10 key programs targeting energy efficiency improvement in the 11th Five-Year Plan. In response to the growing concerns about energy conservation in residential buildings and its implications for the environment, systematic evaluation on energy and thermal Performance for residential envelops (EETP) is put forward to assess the energy efficiency of envelop designs and to calculate the energy consumption of cooling and heating systems. Hot summer and cold winter zone of China was selected for EETP analysis because of its rigorous climatic and huge energy consumption. The correlations between EETPs and electricity consumptions in cooling season, heating season, and the whole year were built in Shanghai, Changsha, Shaoguan and Chengdu, which represent A, B, C and D subzone of hot summer and cold winter zone in China, respectively. Illustrations indicate that the algorithm is simple and effective, energy and thermal performance of residential envelopes can be evaluated easily. The maximum allowable values of EETPs were determined when just meeting the compulsory indices of Standard JGJ134-2001, the corresponding allowable EETPs were also gained when achieving different energy-saving degrees on basis of it. EETP method can suggest possible ways to improve the energy efficiency for envelope designs of new building and retrofits of existing buildings and provide governments some useful information for the establishment of new policy on energy efficiency buildings. It has important meanings to carry out sustainable residential building designs with high thermal comfort and low energy consumption.

Suggested Citation

  • Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:10:p:1970-1985

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    2. Chow, W. K. & Chan, K. T., 1995. "Parameterization study of the overall thermal-transfer value equation for buildings," Applied Energy, Elsevier, vol. 50(3), pages 247-268.
    3. Janda, Kathryn B. & Busch, John F., 1994. "Worldwide status of energy standards for buildings," Energy, Elsevier, vol. 19(1), pages 27-44.
    4. Yao, Runming & Li, Baizhan & Steemers, Koen, 2005. "Energy policy and standard for built environment in China," Renewable Energy, Elsevier, vol. 30(13), pages 1973-1988.
    5. Perez, Yael Valerie & Capeluto, Isaac Guedi, 2009. "Climatic considerations in school building design in the hot-humid climate for reducing energy consumption," Applied Energy, Elsevier, vol. 86(3), pages 340-348, March.
    6. Peng, Changhai & Wu, Zhishen, 2008. "Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes," Applied Energy, Elsevier, vol. 85(8), pages 735-754, August.
    7. Lam, Joseph C. & Tsang, C.L. & Li, Danny H.W. & Cheung, S.O., 2005. "Residential building envelope heat gain and cooling energy requirements," Energy, Elsevier, vol. 30(7), pages 933-951.
    8. Chow, W.K. & Yu, Philip C.H., 2000. "Controlling building energy use by Overall Thermal Transfer Value (OTTV)," Energy, Elsevier, vol. 25(5), pages 463-478.
    9. Papakostas, K.T. & Michopoulos, A.K. & Kyriakis, N.A., 2009. "Equivalent full-load hours for estimating heating and cooling energy requirements in buildings: Greece case study," Applied Energy, Elsevier, vol. 86(5), pages 757-761, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zheng, Guozhong & Jing, Youyin & Huang, Hongxia & Gao, Yuefen, 2010. "Application of improved grey relational projection method to evaluate sustainable building envelope performance," Applied Energy, Elsevier, vol. 87(2), pages 710-720, February.
    2. Freire, Roberto Zanetti & Mazuroski, Walter & Abadie, Marc Olivier & Mendes, Nathan, 2011. "Capacitive effect on the heat transfer through building glazing systems," Applied Energy, Elsevier, vol. 88(12), pages 4310-4319.
    3. Xiaojun Liu & Xin Chen & Mehdi Shahrestani, 2020. "Optimization of Insulation Thickness of External Walls of Residential Buildings in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, Open Access Journal, vol. 12(4), pages 1-21, February.
    4. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    5. Sree, D. & Paul, T. & Aglan, H., 2010. "Temperature and power consumption measurements as a means for evaluating building thermal performance," Applied Energy, Elsevier, vol. 87(6), pages 2014-2022, June.
    6. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    7. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(11), pages 2520-2529, November.
    8. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    9. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    10. Lin, Yu-Hao & Tsai, Kang-Ting & Lin, Min-Der & Yang, Ming-Der, 2016. "Design optimization of office building envelope configurations for energy conservation," Applied Energy, Elsevier, vol. 171(C), pages 336-346.
    11. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    12. Ding, Wenguang & Niu, Hewen & Chen, Jinsong & Du, Jun & Wu, Yang, 2012. "Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China," Applied Energy, Elsevier, vol. 97(C), pages 16-23.
    13. Yao, Jian, 2012. "Energy optimization of building design for different housing units in apartment buildings," Applied Energy, Elsevier, vol. 94(C), pages 330-337.
    14. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.
    15. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    16. Yu, Jia & Kang, Yanming & Li, He & Zhong, Ke & Zhai, Zhiqiang (John), 2020. "Influence of ventilation-behavior during off-periods on energy-consumption for an intermittently heated room of dormitory buildings," Energy, Elsevier, vol. 197(C).
    17. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:10:p:1970-1985. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.