IDEAS home Printed from
   My bibliography  Save this article

The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting


  • Smeets, Edward M.W.
  • Lewandowski, Iris M.
  • Faaij, André P.C.


The purpose of this study is to analyse the economical and environmental performance of switchgrass and miscanthus production and supply chains in the European Union (EU25), for the years 2004 and 2030. The environmental performance refers to the greenhouse gas (GHG) emissions, the primary fossil energy use and to the impact on fresh water reserves, soil erosion and biodiversity. Analyses are carried out for regions in five countries. The lowest costs of producing (including storing and transporting across 100Â km) in the year 2004 are calculated for Poland, Hungary and Lithuania at 43-64 [euro] per oven dry tonne (odt) or 2.4-3.6 [euro]Â GJ-1 higher heating value. This cost level is roughly equivalent to the price of natural gas (3.1Â [euro]Â GJ-1) and lower than the price of crude oil (4.6Â [euro]Â GJ-1) in 2004, but higher than the price of coal (1.7Â [euro]Â GJ-1) in 2004. The costs of biomass in Italy and the United Kingdom are somewhat higher (65-105Â [euro]Â odt-1 or 3.6-5.8Â [euro]Â GJ-1). The doubling of the price of crude oil and natural gas that is projected for the period 2004-2030, combined with nearly stable biomass production costs, makes the production of perennial grasses competitive with natural gas and fossil oil. The results also show that the substitution of fossil fuels by biomass from perennial grasses is a robust strategy to reduce fossil energy use and curb GHG emissions, provided that perennial grasses are grown on agricultural land (cropland or pastures). However, in such case deep percolation and runoff of water are reduced, which can lead to overexploitation of fresh water reservoirs. This can be avoided by selecting suitable locations (away from direct accessible fresh water reservoirs) and by limiting the size of the plantations. The impacts on biodiversity are generally favourable compared to conventional crops, but the location of the plantation compared to other vegetation types and the size and harvesting regime of the plantation are important variables.

Suggested Citation

  • Smeets, Edward M.W. & Lewandowski, Iris M. & Faaij, André P.C., 2009. "The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1230-1245, August.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1230-1245

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Edwards, William M., 2001. "Machinery Management: Farm Machinery Selection," Staff General Research Papers Archive 2042, Iowa State University, Department of Economics.
    2. Delarue, Erik & Lamberts, Hans & D’haeseleer, William, 2007. "Simulating greenhouse gas (GHG) allowance cost and GHG emission reduction in Western Europe," Energy, Elsevier, vol. 32(8), pages 1299-1309.
    3. Emily Heaton & Stephen Long & Thomas Voigt & Michael Jones & John Clifton-Brown, 2004. "Miscanthus for Renewable Energy Generation: European Union Experience and Projections for Illinois," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 433-451, October.
    4. Styles, David & Jones, Michael B., 2007. "Current and future financial competitiveness of electricity and heat from energy crops: A case study from Ireland," Energy Policy, Elsevier, vol. 35(8), pages 4355-4367, August.
    5. Rowe, Rebecca L. & Street, Nathaniel R. & Taylor, Gail, 2009. "Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 271-290, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    2. Cobuloglu, Halil I. & Büyüktahtakın, İ. Esra, 2015. "Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts," Applied Energy, Elsevier, vol. 140(C), pages 418-434.
    3. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    4. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    5. Iqbal, Y. & Gauder, M. & Claupein, W. & Graeff-Hönninger, S. & Lewandowski, I., 2015. "Yield and quality development comparison between miscanthus and switchgrass over a period of 10 years," Energy, Elsevier, vol. 89(C), pages 268-276.
    6. repec:eee:appene:v:204:y:2017:i:c:p:66-77 is not listed on IDEAS
    7. Hoefnagels, Ric & Smeets, Edward & Faaij, André, 2010. "Greenhouse gas footprints of different biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1661-1694, September.
    8. Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.
    9. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    10. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2012. "Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6083-6102.
    11. Rahman, Md. Mizanur & B. Mostafiz, Suraiya & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 108-119.
    12. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    13. de Wit, Marc & Junginger, Martin & Faaij, André, 2013. "Learning in dedicated wood production systems: Past trends, future outlook and implications for bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 417-432.
    14. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    15. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    16. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    17. Xue, Shuai & Kalinina, Olena & Lewandowski, Iris, 2015. "Present and future options for Miscanthus propagation and establishment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1233-1246.
    18. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    19. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2013. "Miscanthus production and processing in Ireland: An analysis of energy requirements and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 412-420.
    20. van der Hilst, F. & Dornburg, V. & Sanders, J.P.M. & Elbersen, B. & Graves, A. & Turkenburg, W.C. & Elbersen, H.W. & van Dam, J.M.C. & Faaij, A.P.C., 2010. "Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example," Agricultural Systems, Elsevier, vol. 103(7), pages 403-417, September.
    21. Murphy, Fionnuala & McDonnell, Kevin, 2017. "Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry," Energy Policy, Elsevier, vol. 104(C), pages 80-88.
    22. Bocquého, G. & Jacquet, F., 2010. "The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences," Energy Policy, Elsevier, vol. 38(5), pages 2598-2607, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1230-1245. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.