IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i7p2504-2512.html
   My bibliography  Save this article

Farm-level constraints on the domestic supply of perennial energy crops in the UK

Author

Listed:
  • Sherrington, Chris
  • Bartley, Justin
  • Moran, Dominic

Abstract

There are a number of estimates of the land area that could potentially be dedicated to perennial energy crops such as short rotation coppice (SRC) willow and miscanthus in the UK, but little is known about how farmers will respond to the opportunities presented by these relatively novel crops. Perennial energy crops face competition from other, arguably more flexible, uses of farmland, and if not seen as attractive propositions to individual farmers, they will not be grown. Farmers' decisions are therefore a key constraint on potential supply. This paper reviews the policy background and considers whether policy is based on any consideration of likely supply response, before presenting outcomes of focus groups composed of farmers who already grow or are considering growing perennial energy crops. There appear to be a number of barriers to adoption. In addition to concerns over the security of contracts, the current high wheat price increases the opportunity cost of committing land to perennial energy crops. There are also worries about the impact of willow roots on field drains and the cost of returning the land to other uses. This paper outlines a number of issues of importance to policy makers and suggests future research needs.

Suggested Citation

  • Sherrington, Chris & Bartley, Justin & Moran, Dominic, 2008. "Farm-level constraints on the domestic supply of perennial energy crops in the UK," Energy Policy, Elsevier, vol. 36(7), pages 2504-2512, July.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2504-2512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00132-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    2. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    3. Styles, David & Jones, Michael B., 2007. "Current and future financial competitiveness of electricity and heat from energy crops: A case study from Ireland," Energy Policy, Elsevier, vol. 35(8), pages 4355-4367, August.
    4. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    5. Meijer, Ineke S.M. & Hekkert, Marko P. & Koppenjan, Joop F.M., 2007. "The influence of perceived uncertainty on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in the Netherlands," Energy Policy, Elsevier, vol. 35(11), pages 5836-5854, November.
    6. Charles, Michael B. & Ryan, Rachel & Ryan, Neal & Oloruntoba, Richard, 2007. "Public policy and biofuels: The way forward?," Energy Policy, Elsevier, vol. 35(11), pages 5737-5746, November.
    7. van der Laak, W.W.M. & Raven, R.P.J.M. & Verbong, G.P.J., 2007. "Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies," Energy Policy, Elsevier, vol. 35(6), pages 3213-3225, June.
    8. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    9. Upham, Paul & Speakman, Dorian, 2007. "Stakeholder opinion on constrained 2030 bioenergy scenarios for North West England," Energy Policy, Elsevier, vol. 35(11), pages 5549-5561, November.
    10. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    2. del Río, Pablo & Peñasco, Cristina & Mir-Artigues, Pere, 2018. "An overview of drivers and barriers to concentrated solar power in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1019-1029.
    3. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    4. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    5. Negro, Simona O. & Hekkert, Marko P. & Smits, Ruud E., 2007. "Explaining the failure of the Dutch innovation system for biomass digestion--A functional analysis," Energy Policy, Elsevier, vol. 35(2), pages 925-938, February.
    6. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    7. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    8. Wagner de Oliveira & Antonio Fernandes, 2011. "Innovation and Technology Management in Wind Energy Cluster," Energy and Environment Research, Canadian Center of Science and Education, vol. 1(1), pages 175-175, December.
    9. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Kang, Moon Jung & Hwang, Jongwoon, 2016. "Structural dynamics of innovation networks funded by the European Union in the context of systemic innovation of the renewable energy sector," Energy Policy, Elsevier, vol. 96(C), pages 471-490.
    11. Taylor, Peter G. & Bolton, Ronan & Stone, Dave & Upham, Paul, 2013. "Developing pathways for energy storage in the UK using a coevolutionary framework," Energy Policy, Elsevier, vol. 63(C), pages 230-243.
    12. Simona O. Negro & Veronique Vasseur & Wilfried van Sark & Marko Hekkert, 2009. "Understanding innovation system build up: The rise and fall of the Dutch PV Innovation System," Innovation Studies Utrecht (ISU) working paper series 09-04, Utrecht University, Department of Innovation Studies, revised Mar 2009.
    13. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    14. Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
    15. Eleftheriadis, Iordanis M. & Anagnostopoulou, Evgenia G., 2015. "Identifying barriers in the diffusion of renewable energy sources," Energy Policy, Elsevier, vol. 80(C), pages 153-164.
    16. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    17. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    18. Carolan, Michael S., 2010. "Ethanol’s most recent breakthrough in the United States: A case of socio-technical transition," Technology in Society, Elsevier, vol. 32(2), pages 65-71.
    19. Miklós Antal & Ardjan Gazheli & Jeroen C.J.M. van den Bergh, 2012. "Behavioural Foundations of Sustainability Transitions. WWWforEurope Working Paper No. 3," WIFO Studies, WIFO, number 46424, Juni.
    20. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2504-2512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.