Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2020.110585
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kruger, Diana I., 2007. "Coffee production effects on child labor and schooling in rural Brazil," Journal of Development Economics, Elsevier, vol. 82(2), pages 448-463, March.
- Urbaneja, G. & Ferrer, J. & Paez, G. & Arenas, L. & Colina, G., 1996. "Acid hydrolysis and carbohydrates characterization of coffee pulp," Renewable Energy, Elsevier, vol. 9(1), pages 1041-1044.
- Saenger, M & Hartge, E.-U & Werther, J & Ogada, T & Siagi, Z, 2001. "Combustion of coffee husks," Renewable Energy, Elsevier, vol. 23(1), pages 103-121.
- Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
- de Oliveira, Jofran Luiz & da Silva, Jadir Nogueira & Graciosa Pereira, Emanuele & Oliveira Filho, Delly & Rizzo Carvalho, Daniel, 2013. "Characterization and mapping of waste from coffee and eucalyptus production in Brazil for thermochemical conversion of energy via gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 52-58.
- Bilhate Chala & Hans Oechsner & Sajid Latif & Joachim Müller, 2018. "Biogas Potential of Coffee Processing Waste in Ethiopia," Sustainability, MDPI, vol. 10(8), pages 1-14, July.
- de Souza, Hector Jesus Pegoretti Leite & Arantes, Marina Donária Chaves & Vidaurre, Graziela Baptista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & de Souza, Daniel Pegoretti Lei, 2020. "Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production," Renewable Energy, Elsevier, vol. 149(C), pages 128-140.
- Kang, Sae Byul & Oh, Hong Young & Kim, Jong Jin & Choi, Kyu Sung, 2017. "Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW)," Renewable Energy, Elsevier, vol. 113(C), pages 1208-1214.
- Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
- Radovan Nosek & Maw Maw Tun & Dagmar Juchelkova, 2020. "Energy Utilization of Spent Coffee Grounds in the Form of Pellets," Energies, MDPI, vol. 13(5), pages 1-8, March.
- Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
- Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
- La Rovere, E.L. & Grottera, C. & Wills, W., 2018. "Overcoming the financial barrier to a low emission development strategy in Brazil," International Economics, Elsevier, vol. 155(C), pages 61-68.
- Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
- Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
- E. L. La Rovere & C.Grottera & W.Wills, 2018. "Overcoming the financial barrier to a low emission development strategy in Brazil," International Economics, CEPII research center, issue 155, pages 61-68.
- Mussatto, Solange I. & Machado, Ercília M.S. & Carneiro, Lívia M. & Teixeira, José A., 2012. "Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates," Applied Energy, Elsevier, vol. 92(C), pages 763-768.
- Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
- Lisowski, Aleksander & Olendzki, Dariusz & Świętochowski, Adam & Dąbrowska, Magdalena & Mieszkalski, Leszek & Ostrowska-Ligęza, Ewa & Stasiak, Mateusz & Klonowski, Jacek & Piątek, Michał, 2019. "Spent coffee grounds compaction process: Its effects on the strength properties of biofuel pellets," Renewable Energy, Elsevier, vol. 142(C), pages 173-183.
- Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
- Bradshaw, Amanda, 2017. "Regulatory change and innovation in Latin America: The case of renewable energy in Brazil," Utilities Policy, Elsevier, vol. 49(C), pages 156-164.
- Barbanera, M. & Lascaro, E. & Stanzione, V. & Esposito, A. & Altieri, R. & Bufacchi, M., 2016. "Characterization of pellets from mixing olive pomace and olive tree pruning," Renewable Energy, Elsevier, vol. 88(C), pages 185-191.
- Corrêa da Silva, Rodrigo & de Marchi Neto, Ismael & Silva Seifert, Stephan, 2016. "Electricity supply security and the future role of renewable energy sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 328-341.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Clara Lisseth Mendoza Martinez & Ekaterina Sermyagina & Esa Vakkilainen, 2021. "Hydrothermal Carbonization of Chemical and Biological Pulp Mill Sludges," Energies, MDPI, vol. 14(18), pages 1-18, September.
- Mendoza-Martinez, Clara & Sermyagina, Ekaterina & Saari, Jussi & Ramos, Vinicius Faria & Vakkilainen, Esa & Cardoso, Marcelo & Alves Rocha, Elém Patrícia, 2023. "Fast oxidative pyrolysis of eucalyptus wood residues to replace fossil oil in pulp industry," Energy, Elsevier, vol. 263(PE).
- Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Elem Patricia Rocha Alves & Orlando Salcedo-Puerto & Jesús Nuncira & Samuel Emebu & Clara Mendoza-Martinez, 2023. "Renewable Energy Potential and CO 2 Performance of Main Biomasses Used in Brazil," Energies, MDPI, vol. 16(9), pages 1-59, May.
- Jung Eun Park & Gi Bbum Lee & Cheol Jin Jeong & Ho Kim & Choong Gon Kim, 2021. "Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization," Energies, MDPI, vol. 14(20), pages 1-11, October.
- Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
- Yessenia Martínez-Ruiz & Diego Fernando Manotas-Duque & Juan Carlos Osorio-Gómez & Howard Ramírez-Malule, 2022. "Evaluation of Energy Potential from Coffee Pulp in a Hydrothermal Power Market through System Dynamics: The Case of Colombia," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
- Lima, Michael Douglas Roque & Bufalino, Lina & Scatolino, Mário Vanoli & Hein, Paulo Ricardo Gherardi & Carneiro, Angélica de Cássia Oliveira & Trugilho, Paulo Fernando & Protásio, Thiago de Paula, 2023. "Segregating Amazonia logging wastes from sustainable forest management improves carbonization in brick kilns," Renewable Energy, Elsevier, vol. 211(C), pages 772-788.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Radovan Nosek & Maw Maw Tun & Dagmar Juchelkova, 2020. "Energy Utilization of Spent Coffee Grounds in the Form of Pellets," Energies, MDPI, vol. 13(5), pages 1-8, March.
- Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
- William Wills & Emilio Lebre La Rovere & Carolina Grottera & Giovanna Ferrazzo Naspolini & Gaëlle Le Treut & F. Ghersi & Julien Lefèvre & Carolina Burle Schmidt Dubeux, 2022. "Economic and social effectiveness of carbon pricing schemes to meet Brazilian NDC targets," Post-Print hal-03500923, HAL.
- Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
- Paola D'Orazio, 2022.
"Mapping the emergence and diffusion of climate-related financial policies: Evidence from a cluster analysis on G20 countries,"
International Economics, CEPII research center, issue 169, pages 135-147.
- D'Orazio, Paola, 2022. "Mapping the emergence and diffusion of climate-related financial policies: Evidence from a cluster analysis on G20 countries," International Economics, Elsevier, vol. 169(C), pages 135-147.
- Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
- Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
- A. E. Atabani & Eyas Mahmoud & Muhammed Aslam & Salman Raza Naqvi & Dagmar Juchelková & Shashi Kant Bhatia & Irfan Anjum Badruddin & T. M. Yunus Khan & Anh Tuan Hoang & Petr Palacky, 2023. "Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7585-7623, August.
- Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
- Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
- Silva-Martínez, Rodolfo Daniel & Sanches-Pereira, Alessandro & Ortiz, Willington & Gómez Galindo, Maria Fernanda & Coelho, Suani Teixeira, 2020. "The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities," Renewable Energy, Elsevier, vol. 156(C), pages 509-525.
- Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
- David Orrego & Arley David Zapata-Zapata & Daehwan Kim, 2018. "Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production," Energies, MDPI, vol. 11(4), pages 1-12, March.
- Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
- Lachman, Jakub & Lisý, Martin & Baláš, Marek & Matúš, Miloš & Lisá, Hana & Milčák, Pavel, 2022. "Spent coffee grounds and wood co-firing: Fuel preparation, properties, thermal decomposition, and emissions," Renewable Energy, Elsevier, vol. 193(C), pages 464-474.
- Duk-Gam Woo & Sang Hyeon Kim & Tae Han Kim, 2021. "Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Dal-Bó, Vanessa & Lira, Taisa & Arrieche, Leonardo & Bacelos, Marcelo, 2019. "Process synthesis for coffee husks to energy using hierarchical approaches," Renewable Energy, Elsevier, vol. 142(C), pages 195-206.
- Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Fargione, Joseph E. & Hill, Jason D. & Schenk, Peer M., 2021. "Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries," Energy, Elsevier, vol. 215(PA).
- Haider Mahmood & Maham Furqan & Omar Ali Bagais, 2018. "Environmental Accounting of Financial Development and Foreign Investment: Spatial Analyses of East Asia," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
More about this item
Keywords
Coffee residues; Value-added products; Thermochemical; Energetic routes; Mass and energy balances;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308698. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.