IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v131y2020ics1364032120302902.html
   My bibliography  Save this article

Viability of pressure-retarded osmosis for harvesting energy from salinity gradients

Author

Listed:
  • Touati, Khaled
  • Rahaman, Md. Saifur

Abstract

Pressure-retarded osmosis (PRO) has been widely investigated as a source of clean energy. Several configurations and hybrid processes have been suggested and deeply studied, namely, standalone open-loop PRO (OLPRO), standalone closed-loop PRO (CLPRO), and PRO coupled to seawater reverse osmosis (SWRO-PRO). Until now, no study has provided a definite decision on the viability of this process. In this study, the feasibility of PRO as a renewable energy source was studied. First, SWRO-PRO was energetically and economically investigated by developing the overall specific energy consumption and the levelized cost of electricity (LCOE). Energy and economic analyses revealed that SWRO-PRO is unviable, even with ideal membrane performance and an optimized process. OLPRO and CLPRO were also economically evaluated. The analysis showed that OLPRO operating with hypersaline sources is economically viable only with very low-concentration feed solution. CLPRO displayed better economic and energy performance than OLPRO, but its economic viability is still strongly dependent on the energy consumption of the draw solute regeneration system. The lower bounds of power density (PD) that should be produced to ensure economic competitiveness with wind and solar energy were identified with good accuracy. Finally, practical recommendations were suggested toward a viable PRO-based power plant.

Suggested Citation

  • Touati, Khaled & Rahaman, Md. Saifur, 2020. "Viability of pressure-retarded osmosis for harvesting energy from salinity gradients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302902
    DOI: 10.1016/j.rser.2020.109999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120302902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salamanca, Jacobo M. & Álvarez-Silva, Oscar & Tadeo, Fernando, 2019. "Potential and analysis of an osmotic power plant in the Magdalena River using experimental field-data," Energy, Elsevier, vol. 180(C), pages 548-555.
    2. Qais A. Khasawneh & Bourhan Tashtoush & Anas Nawafleh & Bayan Kan’an, 2018. "Techno-Economic Feasibility Study of a Hypersaline Pressure-Retarded Osmosis Power Plants: Dead Sea–Red Sea Conveyor," Energies, MDPI, vol. 11(11), pages 1-17, November.
    3. Tran, Thomas T.D. & Park, Keunhan & Smith, Amanda D., 2017. "System scaling approach and thermoeconomic analysis of a pressure retarded osmosis system for power production with hypersaline draw solution: A Great Salt Lake case study," Energy, Elsevier, vol. 126(C), pages 97-111.
    4. Klessmann, Corinna & Held, Anne & Rathmann, Max & Ragwitz, Mario, 2011. "Status and perspectives of renewable energy policy and deployment in the European Union—What is needed to reach the 2020 targets?," Energy Policy, Elsevier, vol. 39(12), pages 7637-7657.
    5. Altaee, Ali & Palenzuela, Patricia & Zaragoza, Guillermo & AlAnezi, Adnan Alhathal, 2017. "Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance," Applied Energy, Elsevier, vol. 191(C), pages 328-345.
    6. Touati, Khaled & Salamanca, Jacobo & Tadeo, Fernando & Elfil, Hamza, 2017. "Energy recovery from two-stage SWRO plant using PRO without external freshwater feed stream: Theoretical analysis," Renewable Energy, Elsevier, vol. 105(C), pages 84-95.
    7. Amjad, Muhammad & Gardy, Jabbar & Hassanpour, Ali & Wen, Dongsheng, 2018. "Novel draw solution for forward osmosis based solar desalination," Applied Energy, Elsevier, vol. 230(C), pages 220-231.
    8. Touati, Khaled & Usman, Haamid Sani & Mulligan, Catherine N. & Rahaman, Md. Saifur, 2020. "Energetic and economic feasibility of a combined membrane-based process for sustainable water and energy systems," Applied Energy, Elsevier, vol. 264(C).
    9. Liu, Wen & Ramirez, Andrea, 2017. "State of the art review of the environmental assessment and risks of underground geo-energy resources exploitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 628-644.
    10. El-Emam, Rami Salah & Dincer, Ibrahim, 2014. "Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery," Energy, Elsevier, vol. 64(C), pages 154-163.
    11. Touati, Khaled & Tadeo, Fernando & Elfil, Hamza, 2017. "Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis," Energy, Elsevier, vol. 132(C), pages 213-224.
    12. Wan, Chun Feng & Chung, Tai-Shung, 2018. "Techno-economic evaluation of various RO+PRO and RO+FO integrated processes," Applied Energy, Elsevier, vol. 212(C), pages 1038-1050.
    13. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) osmotic power plant," Applied Energy, Elsevier, vol. 158(C), pages 584-596.
    14. Naghiloo, Ahmad & Abbaspour, Majid & Mohammadi-Ivatloo, Behnam & Bakhtari, Khosro, 2015. "Modeling and design of a 25 MW osmotic power plant (PRO) on Bahmanshir River of Iran," Renewable Energy, Elsevier, vol. 78(C), pages 51-59.
    15. Peter Erickson & Michael Lazarus & Georgia Piggot, 2018. "Limiting fossil fuel production as the next big step in climate policy," Nature Climate Change, Nature, vol. 8(12), pages 1037-1043, December.
    16. Altaee, Ali & Zaragoza, Guillermo & Drioli, Enrico & Zhou, John, 2017. "Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process," Applied Energy, Elsevier, vol. 199(C), pages 359-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zadeh, Ali Etemad & Touati, Khaled & Mulligan, Catherine N. & McCutcheon, Jeffrey R. & Rahaman, Md. Saifur, 2022. "Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Usman, Haamid Sani & Touati, Khaled & Rahaman, Md. Saifur, 2021. "An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water," Renewable Energy, Elsevier, vol. 169(C), pages 1294-1304.
    3. Xu, Jiacheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Towards cost-effective osmotic power harnessing: Mass exchanger network synthesis for multi-stream pressure-retarded osmosis systems," Applied Energy, Elsevier, vol. 330(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Touati, Khaled & Usman, Haamid Sani & Mulligan, Catherine N. & Rahaman, Md. Saifur, 2020. "Energetic and economic feasibility of a combined membrane-based process for sustainable water and energy systems," Applied Energy, Elsevier, vol. 264(C).
    2. Tawalbeh, Muhammad & Al-Othman, Amani & Abdelwahab, Noun & Alami, Abdul Hai & Olabi, Abdul Ghani, 2021. "Recent developments in pressure retarded osmosis for desalination and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Bargiacchi, Eleonora & Orciuolo, Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2020. "Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows," Energy, Elsevier, vol. 211(C).
    4. Maisonneuve, Jonathan & Chintalacheruvu, Sanjana, 2019. "Increasing osmotic power and energy with maximum power point tracking," Applied Energy, Elsevier, vol. 238(C), pages 683-695.
    5. Zadeh, Ali Etemad & Touati, Khaled & Mulligan, Catherine N. & McCutcheon, Jeffrey R. & Rahaman, Md. Saifur, 2022. "Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    7. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    8. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    9. Wang, Yu & Luo, Shirui & Guo, Jiaji & Liu, Ming & Wang, Jinshi & Yan, Junjie & Luo, Tengfei, 2020. "LIS-PRO: A new concept of power generation from low temperature heat using liquid-phase ion-stripping-induced salinity gradient," Energy, Elsevier, vol. 200(C).
    10. Kim, Minseok & Kim, Suhan, 2018. "Practical limit of energy production from seawater by full-scale pressure retarded osmosis," Energy, Elsevier, vol. 158(C), pages 373-382.
    11. Chen, Yingxue & Vepa, Ranjan & Shaheed, Mohammad Hasan, 2018. "Enhanced and speedy energy extraction from a scaled-up pressure retarded osmosis process with a whale optimization based maximum power point tracking," Energy, Elsevier, vol. 153(C), pages 618-627.
    12. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    13. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Haan, Peter & Simmler, Martin, 2018. "Wind electricity subsidies — A windfall for landowners? Evidence from a feed-in tariff in Germany," Journal of Public Economics, Elsevier, vol. 159(C), pages 16-32.
    15. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    16. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    17. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    18. Cahen-Fourot, Louison & Campiglio, Emanuele & Godin, Antoine & Kemp-Benedict, Eric & Trsek, Stefan, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Energy Economics, Elsevier, vol. 103(C).
    19. Benchekroun, Hassan & van der Meijden, Gerard & Withagen, Cees, 2020. "OPEC, unconventional oil and climate change - On the importance of the order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    20. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.