IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220307003.html
   My bibliography  Save this article

LIS-PRO: A new concept of power generation from low temperature heat using liquid-phase ion-stripping-induced salinity gradient

Author

Listed:
  • Wang, Yu
  • Luo, Shirui
  • Guo, Jiaji
  • Liu, Ming
  • Wang, Jinshi
  • Yan, Junjie
  • Luo, Tengfei

Abstract

In this work, a new concept to convert low temperature heat (<100 °C) into electrical power is proposed and theoretically studied. This concept integrates a unique Liquid-phase Ion-Stripping (LIS) process, which uses low temperature heat to generate a salinity gradient, and a pressure retarded osmosis (PRO) process, which converts the salinity gradient into power. The LIS process utilizes a kind of organic solvent to reject ions from a saline source when going through a thermal cycle, thus producing a concentrated brine stream and a fresh water stream. The PRO process then harvests the osmotic pressure from the two streams to produce power. The whole system is a closed loop with no working medium loss. The thermal and electrical energy consumption of the system is analyzed. The overall energy efficiency of the system can reach ∼3.1% when it operates between 40 and 80 °C, and this corresponds to an exergy efficiency of ∼27%. The energy and exergy efficiencies are found to increase with higher solvent extraction efficiency and heat recovery system efficiency. Engineering better solvents can potentially achieve energy and exergy efficiency respectively to 5.6% and 90%.

Suggested Citation

  • Wang, Yu & Luo, Shirui & Guo, Jiaji & Liu, Ming & Wang, Jinshi & Yan, Junjie & Luo, Tengfei, 2020. "LIS-PRO: A new concept of power generation from low temperature heat using liquid-phase ion-stripping-induced salinity gradient," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220307003
    DOI: 10.1016/j.energy.2020.117593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Altaee, Ali & Palenzuela, Patricia & Zaragoza, Guillermo & AlAnezi, Adnan Alhathal, 2017. "Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance," Applied Energy, Elsevier, vol. 191(C), pages 328-345.
    2. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    3. Seok Woo Lee & Yuan Yang & Hyun-Wook Lee & Hadi Ghasemi & Daniel Kraemer & Gang Chen & Yi Cui, 2014. "An electrochemical system for efficiently harvesting low-grade heat energy," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    4. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    5. Altaee, Ali & Zaragoza, Guillermo & Drioli, Enrico & Zhou, John, 2017. "Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process," Applied Energy, Elsevier, vol. 199(C), pages 359-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).
    2. Ma, Liuyang & Zhao, Qin & Zhang, Houcheng & Hou, Shujin & Zhao, Jiapei & Wang, Fu & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Performance analysis of a concentrated photovoltaic cell-elastocaloric cooler hybrid system for power and cooling cogeneration," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    3. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Ecological analysis of a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 107(C), pages 95-102.
    4. An, Yichao & Zhang, Yongsheng & Shi, Yu & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2023. "Alleviated ammonia crossover in thermally regenerative ammonia-based batteries by optimizing the introduced intermediate-chamber," Applied Energy, Elsevier, vol. 349(C).
    5. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    6. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat," Energy, Elsevier, vol. 87(C), pages 463-469.
    7. Zadeh, Ali Etemad & Touati, Khaled & Mulligan, Catherine N. & McCutcheon, Jeffrey R. & Rahaman, Md. Saifur, 2022. "Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    10. Touati, Khaled & Rahaman, Md. Saifur, 2020. "Viability of pressure-retarded osmosis for harvesting energy from salinity gradients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    12. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
    13. Dokl, Monika & Gomilšek, Rok & Čuček, Lidija & Abikoye, Ben & Kravanja, Zdravko, 2022. "Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry," Energy, Elsevier, vol. 239(PE).
    14. Tawalbeh, Muhammad & Al-Othman, Amani & Abdelwahab, Noun & Alami, Abdul Hai & Olabi, Abdul Ghani, 2021. "Recent developments in pressure retarded osmosis for desalination and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    16. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    17. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    18. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    19. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    20. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220307003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.