IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v107y2016icp95-102.html
   My bibliography  Save this article

Ecological analysis of a thermally regenerative electrochemical cycle

Author

Listed:
  • Long, Rui
  • Li, Baode
  • Liu, Zhichun
  • Liu, Wei

Abstract

The performance of a TREC (thermally regenerative electrochemical cycle) has been investigated based on the finite time analysis. The impacts of the cell material, heat exchangers, and heat sources on the maximum ecological objective function and its corresponding power output and efficiency have been analyzed. For prescribed heat sources, the efficiency corresponding to the maximum ecological criterion is always less than that corresponding to the maximum power. Results also reveal that materials with larger isothermal coefficient and specific charge/discharge capacity and lower internal resistance and specific heat lead to a larger maximum ecological objective function and the corresponding power output and efficiency. Heat exchangers with much higher performance are of no practical use to enhance the performance of the TREC system, and the characteristics of the heat sources also present significant impacts on the performance of the TREC under the maximum ecological criterion. As the ecological criterion considers both the energy benefit and loss, the results in this paper may contribute in designing high performance TREC devices.

Suggested Citation

  • Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Ecological analysis of a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 107(C), pages 95-102.
  • Handle: RePEc:eee:energy:v:107:y:2016:i:c:p:95-102
    DOI: 10.1016/j.energy.2016.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216304017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Rui & Liu, Wei, 2015. "Ecological optimization for general heat engines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 232-239.
    2. Ust, Yasin & Safa, Aykut & Sahin, Bahri, 2005. "Ecological performance analysis of an endoreversible regenerative Brayton heat-engine," Applied Energy, Elsevier, vol. 80(3), pages 247-260, March.
    3. Khaliq, Abdul & Kumar, Rajesh, 2005. "Finite-time heat-transfer analysis and ecological optimization of an endoreversible and regenerative gas-turbine power-cycle," Applied Energy, Elsevier, vol. 81(1), pages 73-84, May.
    4. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    5. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
    6. Long, Rui & Liu, Wei, 2016. "Ecological optimization and coefficient of performance bounds of general refrigerators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 14-21.
    7. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    8. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    9. Steffen, Michael & Löffler, Michael & Schaber, Karlheinz, 2013. "Efficiency of a new Triangle Cycle with flash evaporation in a piston engine," Energy, Elsevier, vol. 57(C), pages 295-307.
    10. Ust, Yasin & Sahin, Bahri & Kodal, Ali & Akcay, Ismail Hakki, 2006. "Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine," Applied Energy, Elsevier, vol. 83(6), pages 558-572, June.
    11. Seok Woo Lee & Yuan Yang & Hyun-Wook Lee & Hadi Ghasemi & Daniel Kraemer & Gang Chen & Yi Cui, 2014. "An electrochemical system for efficiently harvesting low-grade heat energy," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    12. Wu, Chih & Kiang, Robert L., 1992. "Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility," Energy, Elsevier, vol. 17(12), pages 1173-1178.
    13. Chen, Lingen & Zhou, Jianping & Sun, Fengrui & Wu, Chih, 2004. "Ecological optimization for generalized irreversible Carnot engines," Applied Energy, Elsevier, vol. 77(3), pages 327-338, March.
    14. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    15. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat," Energy, Elsevier, vol. 87(C), pages 463-469.
    16. Chen, Lingen & Zhu, Xiaoqin & Sun, Fengrui & Wu, Chih, 2006. "Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines," Applied Energy, Elsevier, vol. 83(6), pages 573-582, June.
    17. Chen, Lingen & Zhang, Wanli & Sun, Fengrui, 2007. "Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles," Applied Energy, Elsevier, vol. 84(5), pages 512-525, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    2. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    3. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    4. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    5. Fathabadi, Hassan, 2019. "Solar energy harvesting in buildings using a proposed novel electrochemical device as an alternative to PV modules," Renewable Energy, Elsevier, vol. 133(C), pages 118-125.
    6. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Performance analysis of a novel hybrid electrical generation system using photovoltaic/thermal and thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 232(C).
    7. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Effect of air gap on a novel hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system," Applied Energy, Elsevier, vol. 293(C).
    8. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    9. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
    10. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Baode & Long, Rui & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a thermally regenerative electrochemical refrigerator," Energy, Elsevier, vol. 112(C), pages 43-51.
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    3. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
    4. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 107(C), pages 388-395.
    5. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    6. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat," Energy, Elsevier, vol. 87(C), pages 463-469.
    7. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining performance of an irreversible nano scale dual cycle operating with Maxwell–Boltzmann gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 342-349.
    8. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    9. Açıkkalp, Emin, 2015. "Exergetic sustainability evaluation of irreversible Carnot refrigerator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 311-320.
    10. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas, 2015. "Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1055-1070.
    11. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    12. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "A hybrid system using direct contact membrane distillation for water production to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 147(C), pages 578-586.
    13. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    14. Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
    15. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    16. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    17. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    18. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    19. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization," Energy, Elsevier, vol. 151(C), pages 1-10.
    20. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2018. "A continuous concentration gradient flow electrical energy storage system based on reverse osmosis and pressure retarded osmosis," Energy, Elsevier, vol. 152(C), pages 896-905.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:107:y:2016:i:c:p:95-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.