IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p163-d1308884.html
   My bibliography  Save this article

Performance Potential of a Concentrated Photovoltaic-Electrochemical Hybrid System

Author

Listed:
  • Yingyan Lin

    (School of Mechanic and Electronic Engineering, Sanming University, Sanming 365000, China)

  • Ronghui Xiao

    (School of Mechanic and Electronic Engineering, Sanming University, Sanming 365000, China)

  • Liwei Chen

    (School of Mechanic and Electronic Engineering, Sanming University, Sanming 365000, China)

  • Houcheng Zhang

    (College of New Energy, Ningbo University of Technology, Ningbo 315211, China)

Abstract

A novel hybrid system model, combining a concentrated photovoltaic cell (CPC) with a thermally regenerative electrochemical cycle (TREC), is proposed. This innovative setup allows the TREC to convert heat from the CPC into electricity. The model incorporates mathematical equations that explicitly define power output, energy efficiency, and exergy efficiency for both the CPC and the TREC individually, as well as for the hybrid system as a whole. The outcomes of the computations reveal that the hybrid system surpasses the performance metrics of the CPC alone. Specifically, the hybrid system achieves a notably higher maximum power density (MPD), maximum energy efficiency (MEE), and maximum exergy efficiency (MMEE) compared to the standalone CPC, with improvements of 392.68 W m −2 , 10.33%, and 11.11%, respectively. Through thorough parametric analyses, it was observed that specific factors positively impact the hybrid system’s performance. These factors include higher operating temperatures, increased solar irradiation, specific concentration ratios, and alterations in the internal resistance or temperature coefficient of the TREC. However, it was noted that elevating the operating temperature of the CPC adversely affects the hybrid system’s performance. Furthermore, augmenting solar irradiation and optical concentration ratios amplifies the limiting electric current. Conversely, reducing the internal resistance of the TREC enhances the overall performance of the hybrid system. These discoveries have practical implications for optimizing the design and operation of a functional CPC-TREC hybrid system, providing valuable insights into maximizing its efficiency and effectiveness.

Suggested Citation

  • Yingyan Lin & Ronghui Xiao & Liwei Chen & Houcheng Zhang, 2023. "Performance Potential of a Concentrated Photovoltaic-Electrochemical Hybrid System," Energies, MDPI, vol. 17(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:163-:d:1308884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Performance analysis of a novel hybrid electrical generation system using photovoltaic/thermal and thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 232(C).
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat," Energy, Elsevier, vol. 87(C), pages 463-469.
    3. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    4. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 107(C), pages 388-395.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Nimr, Moh'd A. & Dawahdeh, Ahmad I. & Ali, Hussain A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 663-675.
    2. Dawahdeh, Ahmad I. & Al-Nimr, Moh'd A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a biofuel stove," Energy, Elsevier, vol. 251(C).
    3. Huang, Yuewu & Li, Danyi & Chen, Zhuo, 2022. "Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices," Energy, Elsevier, vol. 260(C).
    4. Dawahdeh, Ahmad I. & Al-Nimr, Moh'd.A., 2023. "A novel energy harvesting and battery thermal management in hybrid vehicles using a thermally regenerative electrochemical device," Energy, Elsevier, vol. 270(C).
    5. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    6. Tang, Xin & Li, Guiqiang & Zhao, Xudong & Shi, Kai & Lao, Li, 2022. "Simulation analysis and experimental validation of enhanced photovoltaic thermal module by harnessing heat," Applied Energy, Elsevier, vol. 309(C).
    7. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    8. Lin, Jian & Wu, Nianyuan & Li, Li & Xie, Meina & Xie, Shan & Wang, Xiaonan & Brandon, Nigel & Sun, Yifei & Chen, Jincan & Zhao, Yingru, 2022. "Performance and parameter optimization of a capacitive salinity/heat engine for harvesting salinity difference energy and low grade heat," Renewable Energy, Elsevier, vol. 183(C), pages 283-293.
    9. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    10. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
    11. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    12. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    13. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    14. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    15. Li, Guiqiang & Lu, Yashun & Zhao, Xudong, 2022. "The Gaussian non-uniform temperature field on PV cells - A unique solution for enhancing the performance of the PV/T module," Energy, Elsevier, vol. 250(C).
    16. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Li, Yangyang, 2021. "An alkaline fuel cell/direct contact membrane distillation hybrid system for cogenerating electricity and freshwater," Energy, Elsevier, vol. 225(C).
    17. Fang, Juan & Dong, Hao & Huo, Hailong & Yi, Xiaoping & Wen, Zhi & Liu, Qibin & Liu, Xunliang, 2023. "Thermodynamic performance of solar full-spectrum electricity generation system integrating photovoltaic cell with thermally-regenerative ammonia battery," Applied Energy, Elsevier, vol. 332(C).
    18. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    19. Zhaoda Zhong & Samuel Simon Araya & Vincenzo Liso & Jimin Zhu, 2023. "Multi-Objective Assessment and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell: Steady-State Analysis," Energies, MDPI, vol. 16(24), pages 1-21, December.
    20. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:163-:d:1308884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.