IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222019971.html
   My bibliography  Save this article

Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices

Author

Listed:
  • Huang, Yuewu
  • Li, Danyi
  • Chen, Zhuo

Abstract

To realize broad residual-heat utilization of energy, a novel solar-driven system is proposed by hybridizing a dye-sensitized solar cell (DSSC) with a thermally regenerative electrochemical cycle (TREC) and a thermally regenerative electrochemical refrigerator (TRER). Systems for power and cooling cogeneration consisting of DSSC and two-stage thermally regenerative electrochemical devices are rarely explored. Part of heat dissipated by DSSC is absorbed by TREC to generate power, which drives TRER for refrigeration. Mathematical formulas about the power output and efficiency of the subsystems and coupled system are deduced considering thermodynamic and electrochemical irreversible losses. Moreover, numerical calculations indicate that the maximum power output density (MPOD) and maximum energy efficiency (MEE) of the coupled system are 95.15W m−2 and 24.13%, respectively, which are promoted by 10.68% and 8.89% compared to a single DSSC. Extensive parametric studies are performed for grasping the impacts of several key parameters on system performance, thereby providing data support for system optimization. There are optimal values for performance indicators when TiO2 film thickness is located between 1.0×10-2mm and 4.0×10-2mm, and the performance improvement is extremely inconspicuous after the photoelectron absorption coefficient reaches 5.0 × 105m−1. The conclusions show that this established model is suitable, and it opens up another avenue to design such a functional system.

Suggested Citation

  • Huang, Yuewu & Li, Danyi & Chen, Zhuo, 2022. "Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019971
    DOI: 10.1016/j.energy.2022.125102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Baode & Long, Rui & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a thermally regenerative electrochemical refrigerator," Energy, Elsevier, vol. 112(C), pages 43-51.
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat," Energy, Elsevier, vol. 87(C), pages 463-469.
    3. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    4. Fathabadi, Hassan, 2019. "Replacing commercial thermoelectric generators with a novel electrochemical device in low-grade heat applications," Energy, Elsevier, vol. 174(C), pages 932-937.
    5. Kim, Chul, 2021. "A review of the deployment programs, impact, and barriers of renewable energy policies in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    7. Al-Dousari, Ali & Al-Nassar, Waleed & Al-Hemoud, Ali & Alsaleh, Abeer & Ramadan, Ashraf & Al-Dousari, Noor & Ahmed, Modi, 2019. "Solar and wind energy: Challenges and solutions in desert regions," Energy, Elsevier, vol. 176(C), pages 184-194.
    8. Su, Shanhe & Liu, Tie & Wang, Yuan & Chen, Xiaohang & Wang, Jintong & Chen, Jincan, 2014. "Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device," Applied Energy, Elsevier, vol. 120(C), pages 16-22.
    9. Huen, Priscilla & Daoud, Walid A., 2017. "Advances in hybrid solar photovoltaic and thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1295-1302.
    10. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 107(C), pages 388-395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Nimr, Moh'd A. & Dawahdeh, Ahmad I. & Ali, Hussain A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 663-675.
    2. Dawahdeh, Ahmad I. & Al-Nimr, Moh'd A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a biofuel stove," Energy, Elsevier, vol. 251(C).
    3. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    4. Yingyan Lin & Ronghui Xiao & Liwei Chen & Houcheng Zhang, 2023. "Performance Potential of a Concentrated Photovoltaic-Electrochemical Hybrid System," Energies, MDPI, vol. 17(1), pages 1-21, December.
    5. Dawahdeh, Ahmad I. & Al-Nimr, Moh'd.A., 2023. "A novel energy harvesting and battery thermal management in hybrid vehicles using a thermally regenerative electrochemical device," Energy, Elsevier, vol. 270(C).
    6. Tang, Xin & Li, Guiqiang & Zhao, Xudong & Shi, Kai & Lao, Li, 2022. "Simulation analysis and experimental validation of enhanced photovoltaic thermal module by harnessing heat," Applied Energy, Elsevier, vol. 309(C).
    7. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    8. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    9. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    10. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Effect of air gap on a novel hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system," Applied Energy, Elsevier, vol. 293(C).
    11. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Performance analysis of a novel hybrid electrical generation system using photovoltaic/thermal and thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 232(C).
    12. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    13. Lin, Jian & Wu, Nianyuan & Li, Li & Xie, Meina & Xie, Shan & Wang, Xiaonan & Brandon, Nigel & Sun, Yifei & Chen, Jincan & Zhao, Yingru, 2022. "Performance and parameter optimization of a capacitive salinity/heat engine for harvesting salinity difference energy and low grade heat," Renewable Energy, Elsevier, vol. 183(C), pages 283-293.
    14. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    15. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
    16. Zhao, Qin & Lai, Cong & Zhang, Houcheng & Hu, Ziyang, 2023. "A broad-spectrum solar energy power system by hybridizing stirling-like thermocapacitive cycles to dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 205(C), pages 94-104.
    17. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    18. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    19. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    20. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.