IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920302117.html
   My bibliography  Save this article

Energetic and economic feasibility of a combined membrane-based process for sustainable water and energy systems

Author

Listed:
  • Touati, Khaled
  • Usman, Haamid Sani
  • Mulligan, Catherine N.
  • Rahaman, Md. Saifur

Abstract

The water-energy nexus has received a surge of attention recently in the research community as the security of water and energy is becoming a focal concern amongst future uncertainties. Providing innovative technologies that assure water, energy, and food security is thus becoming crucial. In this study, a potential solution is introduced, a membrane-based process that combines seawater reverse osmosis (SWRO), nanofiltration (NF), and pressure retarded osmosis (PRO) to produce drinking water, energy, and water for irrigation. Firstly, an energetic study was performed to evaluate the performance of this process. The analysis of the total energy consumption showed a compelling amount of generated energy (~0.38 kWh/m3). Secondly, a techno-economic study was realized to investigate the economic viability of the process. We found that, with membranes priced at $5/m2, the system is economically feasible with the actual PRO membrane performance. An improvement of membrane performance is required when the membrane price is above $15/m2. The effect of the plant capacity was also investigated. Results showed an improvement on the economics of the process with increased input flows. Finally, the effect of membrane fouling was investigated on the feasibility of the SWRO-PRO-NF process. It was shown that fouling has a drastic impact on the performance, and, thus, economic feasibility of the reported process. Recommendations are enumerated to improve the performance of SWRO-PRO-NF and to mitigate the impact of membrane fouling such optimization of pretreatment and introducing advanced antifouling membrane materials.

Suggested Citation

  • Touati, Khaled & Usman, Haamid Sani & Mulligan, Catherine N. & Rahaman, Md. Saifur, 2020. "Energetic and economic feasibility of a combined membrane-based process for sustainable water and energy systems," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302117
    DOI: 10.1016/j.apenergy.2020.114699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Altaee, Ali & Palenzuela, Patricia & Zaragoza, Guillermo & AlAnezi, Adnan Alhathal, 2017. "Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance," Applied Energy, Elsevier, vol. 191(C), pages 328-345.
    2. Touati, Khaled & Salamanca, Jacobo & Tadeo, Fernando & Elfil, Hamza, 2017. "Energy recovery from two-stage SWRO plant using PRO without external freshwater feed stream: Theoretical analysis," Renewable Energy, Elsevier, vol. 105(C), pages 84-95.
    3. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    4. Zvi Steiner & Alexandra V. Turchyn & Eyal Harpaz & Jacob Silverman, 2018. "Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    5. Touati, Khaled & Tadeo, Fernando & Elfil, Hamza, 2017. "Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis," Energy, Elsevier, vol. 132(C), pages 213-224.
    6. Prante, Jeri L. & Ruskowitz, Jeffrey A. & Childress, Amy E. & Achilli, Andrea, 2014. "RO-PRO desalination: An integrated low-energy approach to seawater desalination," Applied Energy, Elsevier, vol. 120(C), pages 104-114.
    7. Wan, Chun Feng & Chung, Tai-Shung, 2018. "Techno-economic evaluation of various RO+PRO and RO+FO integrated processes," Applied Energy, Elsevier, vol. 212(C), pages 1038-1050.
    8. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    9. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) osmotic power plant," Applied Energy, Elsevier, vol. 158(C), pages 584-596.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zadeh, Ali Etemad & Touati, Khaled & Mulligan, Catherine N. & McCutcheon, Jeffrey R. & Rahaman, Md. Saifur, 2022. "Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Usman, Haamid Sani & Touati, Khaled & Rahaman, Md. Saifur, 2021. "An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water," Renewable Energy, Elsevier, vol. 169(C), pages 1294-1304.
    3. Touati, Khaled & Rahaman, Md. Saifur, 2020. "Viability of pressure-retarded osmosis for harvesting energy from salinity gradients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Bargiacchi, Eleonora & Orciuolo, Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2020. "Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows," Energy, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Touati, Khaled & Rahaman, Md. Saifur, 2020. "Viability of pressure-retarded osmosis for harvesting energy from salinity gradients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Maisonneuve, Jonathan & Chintalacheruvu, Sanjana, 2019. "Increasing osmotic power and energy with maximum power point tracking," Applied Energy, Elsevier, vol. 238(C), pages 683-695.
    3. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    4. Tawalbeh, Muhammad & Al-Othman, Amani & Abdelwahab, Noun & Alami, Abdul Hai & Olabi, Abdul Ghani, 2021. "Recent developments in pressure retarded osmosis for desalination and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Bargiacchi, Eleonora & Orciuolo, Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2020. "Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows," Energy, Elsevier, vol. 211(C).
    6. Zadeh, Ali Etemad & Touati, Khaled & Mulligan, Catherine N. & McCutcheon, Jeffrey R. & Rahaman, Md. Saifur, 2022. "Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    8. Chen, Yingxue & Vepa, Ranjan & Shaheed, Mohammad Hasan, 2018. "Enhanced and speedy energy extraction from a scaled-up pressure retarded osmosis process with a whale optimization based maximum power point tracking," Energy, Elsevier, vol. 153(C), pages 618-627.
    9. Touati, Khaled & Tadeo, Fernando & Elfil, Hamza, 2017. "Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis," Energy, Elsevier, vol. 132(C), pages 213-224.
    10. Salamanca, Jacobo M. & Álvarez-Silva, Oscar & Tadeo, Fernando, 2019. "Potential and analysis of an osmotic power plant in the Magdalena River using experimental field-data," Energy, Elsevier, vol. 180(C), pages 548-555.
    11. Altaee, Ali & Zaragoza, Guillermo & Drioli, Enrico & Zhou, John, 2017. "Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process," Applied Energy, Elsevier, vol. 199(C), pages 359-369.
    12. Ali Altaee & Nahawand AlZainati, 2020. "Novel Thermal Desalination Brine Reject-Sewage Effluent Salinity Gradient for Power Generation and Dilution of Brine Reject," Energies, MDPI, vol. 13(7), pages 1-14, April.
    13. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    14. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    15. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    16. Altaee, Ali & Palenzuela, Patricia & Zaragoza, Guillermo & AlAnezi, Adnan Alhathal, 2017. "Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance," Applied Energy, Elsevier, vol. 191(C), pages 328-345.
    17. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    18. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    19. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    20. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.