IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924026540.html
   My bibliography  Save this article

Energy consumption and energy efficiency of high-pressure reverse osmosis: Effect of water recovery, number of stages, and energy recovery

Author

Listed:
  • Touati, Khaled
  • Mulligan, Catherine N.

Abstract

Reverse osmosis (RO) brine is becoming a concern due to its environmental impact. One of the proposed solutions to manage RO brine is to treat it using high-pressure reverse osmosis (HPRO) to increase potable water production and achieve near-Zero Liquide Discharge (n-ZLD). However, HPRO energy consumption is considerably high compared to conventional RO which urges the need to optimize it and make brine desalination economically feasible. In this paper, we aim to discuss possible pathways to minimize HPRO energy consumption towards n-ZLD. First, we present the impact of the recovery rate (RR) of each RO stage on the energy consumption and the energy efficiency of HPRO for a targeted total RR = 90 %. To investigate the opportunity of n-ZLD, we compared the energy consumption of 2-stage RO and 3-stage RO for high water recoveries (RR = 90 % with 2-stage RO versus RR = 95 % with 3-stage RO). Our analysis revealed that, depending on the values RR of each RO stage, the energy consumption of 3-stage RO can be lower than that of 2-stage RO where it reaches a minimum of 4.62 kWh m—3 (compared 5.41 kWh m—3 for conventional two-stage RO with RR = 80 %). To decide on the feasibility of 3-stage RO for high water recovery, we performed an economic analysis to estimate the levelized cost of water (LCOW). Results showed that the choice of RR in each RO stage is critical to achieve minimum energy consumption, thereby, lowering the LCOW. Finally, we investigated further improvement of the system by introducing pressure retarded osmosis (PRO) to recover the osmotic energy from the HPRO brine. The energetic and economic analysis revealed that the viability of the process is strongly dependent on the performance of the PRO membrane, PRO feed water concentration, fouling mitigation strategy, and the choice of PRO pretreatment. This study offers insights for a better energy efficient and cost-effective RO desalination process.

Suggested Citation

  • Touati, Khaled & Mulligan, Catherine N., 2025. "Energy consumption and energy efficiency of high-pressure reverse osmosis: Effect of water recovery, number of stages, and energy recovery," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026540
    DOI: 10.1016/j.apenergy.2024.125270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924026540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    2. Yujian Yao & Pingxia Zhang & Chao Jiang & Ryan M. DuChanois & Xuan Zhang & Menachem Elimelech, 2021. "High performance polyester reverse osmosis desalination membrane with chlorine resistance," Nature Sustainability, Nature, vol. 4(2), pages 138-146, February.
    3. Touati, Khaled & Rahaman, Md. Saifur, 2020. "Viability of pressure-retarded osmosis for harvesting energy from salinity gradients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Panagopoulos, Argyris, 2020. "A comparative study on minimum and actual energy consumption for the treatment of desalination brine," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jiacheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Towards cost-effective osmotic power harnessing: Mass exchanger network synthesis for multi-stream pressure-retarded osmosis systems," Applied Energy, Elsevier, vol. 330(PA).
    2. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    3. Song, Daiwang & Zhou, Jie & Wang, Shenghui & Wang, Chengpeng & Liu, Sihan & Zhang, Yin & Tian, Lin & Xiao, Yexiang, 2023. "Adaptability evaluation of piston type high pressure pump integrated with energy recovery device through the numerical simulation and one year's island desalination," Energy, Elsevier, vol. 262(PA).
    4. Portilla-Paveri, Manuel & Cariaga, Denise & Negrete-Pincetic, Matías & Lorca, Álvaro & Anjos, Miguel F., 2024. "A long-term generation and transmission expansion planning model considering desalination flexibility and coordination: A Chilean case study," Applied Energy, Elsevier, vol. 371(C).
    5. Valencia-Díaz, Alejandro & Toro, Eliana M. & Hincapié, Ricardo A., 2025. "Optimal planning and management of the energy–water–carbon nexus in hybrid AC/DC microgrids for sustainable development of remote communities," Applied Energy, Elsevier, vol. 377(PB).
    6. Hipólito-Valencia, Brígido J. & Mosqueda-Jiménez, Francisco Waldemar & Barajas-Fernández, Juan & Ponce-Ortega, José M., 2021. "Incorporating a seawater desalination scheme in the optimal water use in agricultural activities," Agricultural Water Management, Elsevier, vol. 244(C).
    7. Roberto Bruno & Vittorio Ferraro & Piofrancesco Barone & Piero Bevilacqua, 2024. "Energy and Exergy Analyses of an Innovative Heat Recovery System from the LNG Regasification Process in Green Ships," Clean Technol., MDPI, vol. 6(3), pages 1-26, July.
    8. Foroogh Nazari Chamaki & Glenn P. Jenkins & Majid Hashemipour, 2023. "Financial, Economic, and Environmental Analyses of Upgrading Reverse Osmosis Plant Fed with Treated Wastewater," Energies, MDPI, vol. 16(7), pages 1-23, April.
    9. Bar-Nahum, Ziv & Reznik, Ami & Finkelshtain, Israel & Kan, Iddo, 2022. "Centralized water management under lobbying: Economic analysis of desalination in Israel," Ecological Economics, Elsevier, vol. 193(C).
    10. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Simon Lineykin & Abhishek Sharma & Moshe Averbukh, 2023. "Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea," Energies, MDPI, vol. 16(11), pages 1-17, May.
    12. Gabriela Scheibel Cassol & Chii Shang & Alicia Kyoungjin An & Noman Khalid Khanzada & Francesco Ciucci & Alessandro Manzotti & Paul Westerhoff & Yinghao Song & Li Ling, 2024. "Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. David D. J. Antia, 2023. "Desalination of Saline Irrigation Water Using Hydrophobic, Metal–Polymer Hydrogels," Sustainability, MDPI, vol. 15(9), pages 1-32, April.
    14. Minh N. Nguyen & Melinda L. Jue & Steven F. Buchsbaum & Sei Jin Park & Florian Vollnhals & Silke Christiansen & Francesco Fornasiero & Andrea I. Schäfer, 2024. "Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Mendoza-Zapata, Luis & Maturana-Córdoba, Aymer & Mejía-Marchena, Ricardo & Cala, Anggie & Soto-Verjel, Joseph & Villamizar, Salvador, 2023. "Unlocking synergies between seawater desalination and saline gradient energy: Assessing the environmental and economic benefits for dual water and energy production," Applied Energy, Elsevier, vol. 351(C).
    16. Gyung-Geun Oh & Eunchae Do & Sungwon Kang & Weonjae Kim & Sung Soo Yoo & Jeong-Hee Kang, 2024. "A Wet Scrubber and Electrooxidation System for the Efficient Removal of Odor: A Bench-Scale Study," Sustainability, MDPI, vol. 16(12), pages 1-12, June.
    17. Zadeh, Ali Etemad & Touati, Khaled & Mulligan, Catherine N. & McCutcheon, Jeffrey R. & Rahaman, Md. Saifur, 2022. "Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Pérez, Karla & Díaz-Quezada, Simón & Zamora, Daniel & Estay, Humberto, 2025. "Heat pump assisted air gap and direct contact membrane distillation configurations: Comparative simulations of industrial scale cases at the water-energy nexus," Energy, Elsevier, vol. 315(C).
    19. Huijun Han & Yunjae Park & Yohan Kim & Feng Ding & Hyung-Joon Shin, 2024. "Controlled dissolution of a single ion from a salt interface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Yin, Fanglong & Lu, Wang & Ji, Hui & Nie, Songlin & Ma, Zhonghai & Yan, Xiaopeng, 2024. "Multi-objective optimization and energy efficiency improvement for rotor duct in integrated energy recovery-pressure boost device," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.