IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222022411.html
   My bibliography  Save this article

Adaptability evaluation of piston type high pressure pump integrated with energy recovery device through the numerical simulation and one year's island desalination

Author

Listed:
  • Song, Daiwang
  • Zhou, Jie
  • Wang, Shenghui
  • Wang, Chengpeng
  • Liu, Sihan
  • Zhang, Yin
  • Tian, Lin
  • Xiao, Yexiang

Abstract

Small-scale seawater desalination system with energy recovery devices is the mainstream technical solution to cope with fresh water issue and tight power supply in the exploitation of islands. Aiming at the complex working conditions, the adaptability of piston type high pressure pump integrated with energy recovery device (HPP-ERD) is investigated through the numerical simulation and all-year-round island desalination. The numerical results indicate that the consecutive flowrate regulation, broad pressure sustainability and uniform temperature distribution are realized in HPP-ERD within the flowrate of 5.30 m3/h, the pressure of 5.50 MPa, and the temperature of 25 °C. The experimental results prove that HPP-ERD exhibits excellent stability and adaptability at the starting stage and stopping stage, and achieves stable operation in the pressure range between 3.00 MPa and 5.50 MPa. The all-year-round operation demonstrates that HPP-ERD can adapt to the seawater temperature ranging from 0.85 °C to 25.69 °C and the humidity between 63% and 85%. The total internal leakage maintains nearly constant at 0.19 m3/h which contributes to the annual specific energy consumption (SEC) of 3.80 kWh/m3. This investigation provides researchers and engineers with the application references of HPP-ERD in island desalination system.

Suggested Citation

  • Song, Daiwang & Zhou, Jie & Wang, Shenghui & Wang, Chengpeng & Liu, Sihan & Zhang, Yin & Tian, Lin & Xiao, Yexiang, 2023. "Adaptability evaluation of piston type high pressure pump integrated with energy recovery device through the numerical simulation and one year's island desalination," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022411
    DOI: 10.1016/j.energy.2022.125359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    2. Jie Song & Tian Li & Lucía Wright-Contreras & Adrian Wing-Keung Law, 2017. "A review of the current status of small-scale seawater reverse osmosis desalination," Water International, Taylor & Francis Journals, vol. 42(5), pages 618-631, July.
    3. Qi, Bing & Zhang, Desheng & Geng, Linlin & Zhao, Ruijie & van Esch, Bart P.M., 2022. "Numerical and experimental investigations on inflow loss in the energy recovery turbines with back-curved and front-curved impeller based on the entropy generation theory," Energy, Elsevier, vol. 239(PE).
    4. Ma, Qiuming & Xu, Zhenyuan & Wang, Ruzhu & Poredoš, Primož, 2022. "Distributed vacuum membrane distillation driven by direct-solar heating at ultra-low temperature," Energy, Elsevier, vol. 239(PA).
    5. Bin Huang & Kexin Pu & Peng Wu & Dazhuan Wu & Jianxing Leng, 2020. "Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review," Energies, MDPI, vol. 13(16), pages 1-19, August.
    6. Blanco-Marigorta, A.M. & Lozano-Medina, A. & Marcos, J.D., 2017. "A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants," Energy, Elsevier, vol. 137(C), pages 752-760.
    7. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    8. Dallavalle, Elisa & Cipolletta, Mariasole & Casson Moreno, Valeria & Cozzani, Valerio & Zanuttigh, Barbara, 2021. "Towards green transition of touristic islands through hybrid renewable energy systems. A case study in Tenerife, Canary Islands," Renewable Energy, Elsevier, vol. 174(C), pages 426-443.
    9. Panagopoulos, Argyris, 2020. "A comparative study on minimum and actual energy consumption for the treatment of desalination brine," Energy, Elsevier, vol. 212(C).
    10. Mentis, Dimitrios & Karalis, George & Zervos, Arthouros & Howells, Mark & Taliotis, Constantinos & Bazilian, Morgan & Rogner, Holger, 2016. "Desalination using renewable energy sources on the arid islands of South Aegean Sea," Energy, Elsevier, vol. 94(C), pages 262-272.
    11. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    4. Luca Martinelli & Giulio Capovilla & Matteo Volpato & Piero Ruol & Chiara Favaretto & Eva Loukogeorgaki & Mauro Andriollo, 2023. "Experimental Investigation of a Hybrid Device Combining a Wave Energy Converter and a Floating Breakwater in a Wave Flume Equipped with a Controllable Actuator," Energies, MDPI, vol. 17(1), pages 1-18, December.
    5. Xu, Jiacheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Towards cost-effective osmotic power harnessing: Mass exchanger network synthesis for multi-stream pressure-retarded osmosis systems," Applied Energy, Elsevier, vol. 330(PA).
    6. Zhuo Wang & Yanjie Zhang & Tao Wang & Bo Zhang & Hongwen Ma, 2021. "Design and Energy Consumption Analysis of Small Reverse Osmosis Seawater Desalination Equipment," Energies, MDPI, vol. 14(8), pages 1-18, April.
    7. Wang, Tao & Yu, He & Xiang, Ru & Chen, XiaoMing & Zhang, Xiang, 2023. "Performance and unsteady flow characteristic of forward-curved impeller with different blade inlet swept angles in a pump as turbine," Energy, Elsevier, vol. 282(C).
    8. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    9. Hipólito-Valencia, Brígido J. & Mosqueda-Jiménez, Francisco Waldemar & Barajas-Fernández, Juan & Ponce-Ortega, José M., 2021. "Incorporating a seawater desalination scheme in the optimal water use in agricultural activities," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    11. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    12. Guo, Yunzhao & Zhang, Huiping & Fu, Kaiyun & Chen, Xianfu & Qiu, Minghui & Fan, Yiqun, 2023. "Integration of solid acid catalyst and ceramic membrane to boost amine-based CO2 desorption," Energy, Elsevier, vol. 274(C).
    13. Foroogh Nazari Chamaki & Glenn P. Jenkins & Majid Hashemipour, 2023. "Financial, Economic, and Environmental Analyses of Upgrading Reverse Osmosis Plant Fed with Treated Wastewater," Energies, MDPI, vol. 16(7), pages 1-23, April.
    14. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    15. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    16. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin & Lyden, Sarah, 2019. "High penetration renewable generation within Australian isolated and remote power systems," Energy, Elsevier, vol. 168(C), pages 684-692.
    17. Lee, Sangkeum & Hong, Junhee & Har, Dongsoo, 2016. "Jointly optimized control for reverse osmosis desalination process with different types of energy resource," Energy, Elsevier, vol. 117(P1), pages 116-130.
    18. Giudici, Federico & Castelletti, Andrea & Garofalo, Elisabetta & Giuliani, Matteo & Maier, Holger R., 2019. "Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands," Applied Energy, Elsevier, vol. 250(C), pages 605-616.
    19. Lai, Xiaotian & Yu, Minjie & Long, Rui & Liu, Zhichun & Liu, Wei, 2019. "Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model," Energy, Elsevier, vol. 183(C), pages 573-583.
    20. Ghaffarpour, Reza & Mozafari, Babak & Ranjbar, Ali Mohammad & Torabi, Taghi, 2018. "Resilience oriented water and energy hub scheduling considering maintenance constraint," Energy, Elsevier, vol. 158(C), pages 1092-1104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.