IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics0360544223007235.html
   My bibliography  Save this article

Integration of solid acid catalyst and ceramic membrane to boost amine-based CO2 desorption

Author

Listed:
  • Guo, Yunzhao
  • Zhang, Huiping
  • Fu, Kaiyun
  • Chen, Xianfu
  • Qiu, Minghui
  • Fan, Yiqun

Abstract

Amine-based absorption has matured into an established technology for CO2 capture from fossil fuel power plants. However, high energy consumption for CO2 desorption remains a challenge. Herein, we report a promising integration of a solid acid catalyst (i.e., HZSM-5) filled into a vapor permeable-liquid impermeable tubular α-Al2O3 ceramic membrane for boosting CO2 desorption from aqueous monoethanolamine (MEA) solution. Experiments were conducted to investigate the effects of catalyst weight, temperature, pressure, liquid flow rate and CO2 loading on CO2 desorption rate and energy consumption. Furthermore, 60 runs of cyclic tests were carried out to assess the stable CO2 desorption rate and the thermal and chemical stability of both the HZSM-5 catalyst and the α-Al2O3 membrane. The experiment results demonstrated that the HZSM-5 filled α-Al2O3 ceramic membrane contactor exhibited high CO2 desorption performance and long-term stability. It is anticipated that integration of solid acid catalyst with porous ceramic membrane holds great promise in practical application to boost the CO2 desorption rate and reduce the energy requirement.

Suggested Citation

  • Guo, Yunzhao & Zhang, Huiping & Fu, Kaiyun & Chen, Xianfu & Qiu, Minghui & Fan, Yiqun, 2023. "Integration of solid acid catalyst and ceramic membrane to boost amine-based CO2 desorption," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007235
    DOI: 10.1016/j.energy.2023.127329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akachuku, Ananda & Osei, Priscilla Anima & Decardi-Nelson, Benjamin & Srisang, Wayuta & Pouryousefi, Fatima & Ibrahim, Hussameldin & Idem, Raphael, 2019. "Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine – Methyl-diethanolamine (MEA-MDEA) solutions," Energy, Elsevier, vol. 179(C), pages 475-489.
    2. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    3. Wang, Rujie & Liu, Shanshan & Li, Qiangwei & Zhang, Shihan & Wang, Lidong & An, Shanlong, 2021. "CO2 capture performance and mechanism of blended amine solvents regulated by N-methylcyclohexyamine," Energy, Elsevier, vol. 215(PB).
    4. Yan, Shuiping & Fang, Mengxiang & Wang, Zhen & Luo, Zhongyang, 2012. "Regeneration performance of CO2-rich solvents by using membrane vacuum regeneration technology: Relationships between absorbent structure and regeneration efficiency," Applied Energy, Elsevier, vol. 98(C), pages 357-367.
    5. Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
    6. Fu, Hongming & Xue, Kaili & Li, Zhaohao & Zhang, Heng & Gao, Dan & Chen, Haiping, 2023. "Study on the performance of CO2 capture from flue gas with ceramic and PTFE membrane contactors," Energy, Elsevier, vol. 263(PA).
    7. Ma, Qiuming & Xu, Zhenyuan & Wang, Ruzhu & Poredoš, Primož, 2022. "Distributed vacuum membrane distillation driven by direct-solar heating at ultra-low temperature," Energy, Elsevier, vol. 239(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatarczuk, Adam & Szega, Marcin & Zuwała, Jarosław, 2023. "Thermodynamic analysis of a post-combustion carbon dioxide capture process in a pilot plant equipped with a heat integrated stripper," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xinwei & He, Hang & Barzagli, Francesco & Amer, Mohammad Waleed & Li, Chao'en & Zhang, Rui, 2023. "Analysis of the energy consumption in solvent regeneration processes using binary amine blends for CO2 capture," Energy, Elsevier, vol. 270(C).
    2. Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
    3. Siti Aishah Mohd Rozaiddin & Kok Keong Lau, 2022. "A Review on Enhancing Solvent Regeneration in CO 2 Absorption Process Using Nanoparticles," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    4. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    5. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    6. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    7. Lou, Feijian & Zhang, Anfeng & Zhang, Guanghui & Ren, Limin & Guo, Xinwen & Song, Chunshan, 2020. "Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure," Applied Energy, Elsevier, vol. 264(C).
    8. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).
    9. Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
    10. Choe, Changgwon & Cheon, Seunghyun & Kim, Heehyang & Lim, Hankwon, 2023. "Mitigating climate change for negative CO2 emission via syngas methanation: Techno-economic and life-cycle assessments of renewable methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Yaofeng Xu & Shuai Deng & Li Zhao & Xiangzhou Yuan & Jianxin Fu & Shuangjun Li & Yawen Liang & Junyao Wang & Jun Zhao, 2019. "Application of the Thermodynamic Cycle to Assess the Energy Efficiency of Amine-Based Absorption of Carbon Capture," Energies, MDPI, vol. 12(13), pages 1-20, June.
    12. Wang, Lidong & Fang, Jie & Ma, Haojun & Wang, Chuhuan & Wang, Rujie & Li, Qiangwei & Zhang, Shihan, 2023. "Super-low energy consuming CO2 capture triggered by weak hydrogen bonds in solid-liquid phase separation," Energy, Elsevier, vol. 272(C).
    13. Lai, Qinghua & Kong, Lingli & Gong, Weibo & Russell, Armistead G & Fan, Maohong, 2019. "Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution," Applied Energy, Elsevier, vol. 254(C).
    14. Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
    15. Fu, Hongming & Shen, Yubin & Li, Zhaohao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2023. "CO2 capture using superhydrophobic ceramic membrane: Preparation and performance analysis," Energy, Elsevier, vol. 282(C).
    16. Chen, Hao & Dong, Sheying & Zhang, Yaojun & He, Panyang, 2022. "A comparative study on energy efficient CO2 capture using amine grafted solid sorbent: Materials characterization, isotherms, kinetics and thermodynamics," Energy, Elsevier, vol. 239(PD).
    17. Ilea, Flavia-Maria & Cormos, Ana-Maria & Cristea, Vasile-Mircea & Cormos, Calin-Cristian, 2023. "Enhancing the post-combustion carbon dioxide carbon capture plant performance by setpoints optimization of the decentralized multi-loop and cascade control system," Energy, Elsevier, vol. 275(C).
    18. Ding, Yudong & Ma, Lijiao & Yang, Xiaoqiang & Zhu, Xun & Wang, Hong & Cheng, Min & Liao, Qiang, 2023. "Anhydrous multi-hybrid absorbent with low viscosity and high regeneration efficiency for post-combustion CO2 capture," Energy, Elsevier, vol. 263(PA).
    19. Wang, Rujie & Zhao, Huajun & Yang, Xiaotong & Qi, Cairao & Zhao, Haonan & Zhang, Shihan & Li, Qiangwei & Li, Ping & Wang, Lidong, 2023. "Energy-efficient non-aqueous biphasic solvent for carbon capture: Absorption mechanism, phase evolution process, and non-corrosiveness," Energy, Elsevier, vol. 281(C).
    20. Wang, Rujie & Liu, Shanshan & Li, Qiangwei & Zhang, Shihan & Wang, Lidong & An, Shanlong, 2021. "CO2 capture performance and mechanism of blended amine solvents regulated by N-methylcyclohexyamine," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.