IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006371.html
   My bibliography  Save this article

Techno-economic analysis of heat integrated stripper application in chemical absorption process for CO2 capture: Insights from pilot plant studies

Author

Listed:
  • Tatarczuk, Adam
  • Szega, Marcin
  • Billig, Tomasz
  • Więcław-Solny, Lucyna
  • Zdeb, Janusz

Abstract

This paper presents a comprehensive techno-economic analysis of heat-integrated stripper (HIS) application in chemical absorption processes for CO2 capture, drawing insights from pilot plant studies and simulation analyses. Escalating concerns over carbon emissions prompts a growing interest in amine-based chemical absorption, a proven and promising technology not only for the power industry but also for sectors with hard-to-abate emissions, such as cement, metallurgy, refining, and fertilizer production. Additionally, it supports the capture of CO2 from biogenic carbon sources (BECCS).

Suggested Citation

  • Tatarczuk, Adam & Szega, Marcin & Billig, Tomasz & Więcław-Solny, Lucyna & Zdeb, Janusz, 2025. "Techno-economic analysis of heat integrated stripper application in chemical absorption process for CO2 capture: Insights from pilot plant studies," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006371
    DOI: 10.1016/j.energy.2025.134995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Leites, I.L. & Sama, D.A. & Lior, N., 2003. "The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes," Energy, Elsevier, vol. 28(1), pages 55-97.
    2. Tatarczuk, Adam & Tańczyk, Marek & Więcław-Solny, Lucyna & Zdeb, Janusz, 2024. "Pilot plant results of amine-based carbon capture with heat integrated stripper," Applied Energy, Elsevier, vol. 367(C).
    3. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    4. Akachuku, Ananda & Osei, Priscilla Anima & Decardi-Nelson, Benjamin & Srisang, Wayuta & Pouryousefi, Fatima & Ibrahim, Hussameldin & Idem, Raphael, 2019. "Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine – Methyl-diethanolamine (MEA-MDEA) solutions," Energy, Elsevier, vol. 179(C), pages 475-489.
    5. Arshad, Nahyan & Alhajaj, Ahmed, 2023. "Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant," Energy, Elsevier, vol. 274(C).
    6. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Tomasz Chmielniak & Tomasz Iluk & Leszek Stepien & Tomasz Billig & Marek Sciazko, 2024. "Production of Hydrogen from Biomass with Negative CO 2 Emissions Using a Commercial-Scale Fluidized Bed Gasifier," Energies, MDPI, vol. 17(22), pages 1-27, November.
    8. Oh, Hyun-Taek & Ju, Youngsan & Chung, Kyounghee & Lee, Chang-Ha, 2020. "Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes," Energy, Elsevier, vol. 206(C).
    9. Tatarczuk, Adam & Szega, Marcin & Zuwała, Jarosław, 2023. "Thermodynamic analysis of a post-combustion carbon dioxide capture process in a pilot plant equipped with a heat integrated stripper," Energy, Elsevier, vol. 278(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Tatarczuk & Tomasz Spietz & Lucyna Więcław-Solny & Aleksander Krótki & Tadeusz Chwoła & Szymon Dobras & Janusz Zdeb & Marek Tańczyk, 2025. "Enhancing CO 2 Capture Efficiency: Advanced Modifications of Solvent-Based Absorption Process—Pilot Plant Insights," Energies, MDPI, vol. 18(9), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatarczuk, Adam & Tańczyk, Marek & Więcław-Solny, Lucyna & Zdeb, Janusz, 2024. "Pilot plant results of amine-based carbon capture with heat integrated stripper," Applied Energy, Elsevier, vol. 367(C).
    2. Adam Tatarczuk & Tomasz Spietz & Lucyna Więcław-Solny & Aleksander Krótki & Tadeusz Chwoła & Szymon Dobras & Janusz Zdeb & Marek Tańczyk, 2025. "Enhancing CO 2 Capture Efficiency: Advanced Modifications of Solvent-Based Absorption Process—Pilot Plant Insights," Energies, MDPI, vol. 18(9), pages 1-28, April.
    3. Zhang, Zhiwei & Hong, Suk-Hoon & Lee, Chang-Ha, 2023. "Role and impact of wash columns on the performance of chemical absorption-based CO2 capture process for blast furnace gas in iron and steel industries," Energy, Elsevier, vol. 271(C).
    4. Vinjarapu, Sai Hema Bhavya & Neerup, Randi & Larsen, Anders Hellerup & Villadsen, Sebastian Nis Bay & Jensen, Søren & Karlsson, Jakob Lindkvist & Kappel, Jannik & Lassen, Henrik & Blinksbjerg, Peter &, 2025. "Pilot-scale CO2 capture demonstration of stripper interheating using 30 wt% MEA at a Waste-to-Energy facility," Energy, Elsevier, vol. 320(C).
    5. Han, Sung-Chul & Sung, Hail & Noh, Hye-Won & Mazari, Shaukat Ali & Moon, Jong-Ho & Kim, Kyung-Min, 2024. "Synergistic effect of blended amines on carbon dioxide absorption: Thermodynamic modeling and analysis of regeneration energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    6. Josselyne A. Villarroel & Alex Palma-Cando & Alfredo Viloria & Marvin Ricaurte, 2021. "Kinetic and Thermodynamic Analysis of High-Pressure CO 2 Capture Using Ethylenediamine: Experimental Study and Modeling," Energies, MDPI, vol. 14(20), pages 1-15, October.
    7. Siti Aishah Mohd Rozaiddin & Kok Keong Lau, 2022. "A Review on Enhancing Solvent Regeneration in CO 2 Absorption Process Using Nanoparticles," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    8. Zhang, Zhiwei & Vo, Dat-Nguyen & Nguyen, Tuan B.H. & Sun, Jinsheng & Lee, Chang-Ha, 2024. "Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol," Energy, Elsevier, vol. 293(C).
    9. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
    10. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    11. Chen, Yang & Wu, Ye & Liu, Xing & Ma, Jiliang & Liu, Daoyin & Chen, Xiaoping & Liu, Dong, 2024. "Energy, exergy and economic (3E) analysis of a novel integration process based on coal-fired power plant with CO2 capture & storage, CO2 refrigeration, and waste heat recovery," Energy, Elsevier, vol. 299(C).
    12. Cormos, Calin-Cristian & Dragan, Mihaela & Petrescu, Letitia & Cormos, Ana-Maria & Dragan, Simion & Bathori, Arthur-Maximilian & Galusnyak, Stefan-Cristian, 2024. "Synthetic natural gas (SNG) production by biomass gasification with CO2 capture: Techno-economic and life cycle analysis (LCA)," Energy, Elsevier, vol. 312(C).
    13. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.
    14. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    15. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    16. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    18. Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
    19. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    20. Guo, Yunzhao & Zhang, Huiping & Fu, Kaiyun & Chen, Xianfu & Qiu, Minghui & Fan, Yiqun, 2023. "Integration of solid acid catalyst and ceramic membrane to boost amine-based CO2 desorption," Energy, Elsevier, vol. 274(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.