IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224005309.html
   My bibliography  Save this article

Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol

Author

Listed:
  • Zhang, Zhiwei
  • Vo, Dat-Nguyen
  • Nguyen, Tuan B.H.
  • Sun, Jinsheng
  • Lee, Chang-Ha

Abstract

Developing economically sustainable CO2 capture and conversion processes is essential to realize carbon neutrality. This study proposed an integrated process for CO2 capture and conversion-to-methanol (CCTM) and applied machine learning-based optimization to enhance techno-economic-environmental performance. After validating CO2 capture and CO2-to-methanol sections, an advanced CCTM design was developed and compared with conventional one regarding techno-economic-environmental performance across various operating scenarios. The advanced CCTM exhibited significant improvements in energy consumption (14.73–16.30%), production cost (0.81–1.28%), and net CO2 reduction (3.13–3.38%) owing to efficiently reusing waste heat, off-gas, and water resources. The one-at-a-time sensitivity analysis revealed roles of each variable and nonlinear variable-performance tendencies among operating variables in the advanced CCTM process. Subsequently, a well-developed deep neural network (DNN) model precisely formulated the relationship between key variables and performances. The DNN-based optimization provided optimum operating conditions within a minute, resulting in an 8.21 $/tMeOH (∼0.81%) reduction in production cost compared to base case of CCTM. Notably, the total CO2 capture rate of 92.53% at an optimal condition highlighted the significant contribution of advanced CCTM to carbon neutrality. The findings provide a viable reference for the effective and sustainable design and operation of an integrated CCTM process.

Suggested Citation

  • Zhang, Zhiwei & Vo, Dat-Nguyen & Nguyen, Tuan B.H. & Sun, Jinsheng & Lee, Chang-Ha, 2024. "Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005309
    DOI: 10.1016/j.energy.2024.130758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.