IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v115y2019ics1364032119305945.html
   My bibliography  Save this article

Evaluation of a sample building with different type building elements in an energetic and environmental perspective

Author

Listed:
  • Ozalp, C.
  • Saydam, D.B.
  • Çerçi, K.N.
  • Hürdoğan, E.
  • Moran, H.

Abstract

The energy demand for heating in buildings in a residential area depends on the weather conditions of the area, the architectural characteristics and thermal-physical characteristics of the buildings, as well as the number of buildings in the settlement and the population of the settlement, accordingly. This study aimed to numerically determine the heat losses that may occur in case of different building materials (bricks, pumice, aerated concrete and briquettes) and insulation materials (XPS, EPS, rockwool and glass wool) used in the design of buildings, by applying the Finite Element Method (FEM) and considering the outdoor and indoor weather conditions proposed in Turkish Thermal Insulation Standard (TS 825). Then, the heating requirement according to the TS 825, the monthly fuel consumption, the payback period and the emission amounts in case of insulation were calculated for a model building with an external wall made of different building materials. In this study, the conditions of a model building located in Kahramanmaraş/Turkey were discussed separately in terms of being thermally insulated and non-insulated. As a result of the analyses obtained by using FEM, the effect of the wall building material on heat losses was found to be much higher than that of insulation material. Following the application of thermal insulation to the non-insulated building model, it was seen that the payback period of the first investment value required for the insulation application varied between 0.25 and 1.74 years depending on the type of fuel used for the heating energy requirement as well as on the type of building material. In the case of using briquette wall in the building, it seemed that the heating requirements, monthly fuel consumption and emission amounts were higher than those with other building materials. The briquette wall was followed by bricks, pumice and aerated concrete, respectively.

Suggested Citation

  • Ozalp, C. & Saydam, D.B. & Çerçi, K.N. & Hürdoğan, E. & Moran, H., 2019. "Evaluation of a sample building with different type building elements in an energetic and environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305945
    DOI: 10.1016/j.rser.2019.109386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarak, H & Satman, A, 2003. "The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study," Energy, Elsevier, vol. 28(9), pages 929-939.
    2. Fayaz, Rima & Kari, Behrouz M., 2009. "Comparison of energy conservation building codes of Iran, Turkey, Germany, China, ISO 9164 and EN 832," Applied Energy, Elsevier, vol. 86(10), pages 1949-1955, October.
    3. Wang, Xiao-Qiong & Li, Xiao-Ping & Li, You-Rong & Wu, Chun-Mei, 2015. "Payback period estimation and parameter optimization of subcritical organic Rankine cycle system for waste heat recovery," Energy, Elsevier, vol. 88(C), pages 734-745.
    4. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
    5. Sisman, Nuri & Kahya, Emin & Aras, Nil & Aras, Haydar, 2007. "Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions," Energy Policy, Elsevier, vol. 35(10), pages 5151-5155, October.
    6. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    7. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    8. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    9. Ediger, Volkan Ş. & Kirkil, Gokhan & Çelebi, Emre & Ucal, Meltem & Kentmen-Çin, Çiğdem, 2018. "Turkish public preferences for energy," Energy Policy, Elsevier, vol. 120(C), pages 492-502.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    2. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    3. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Mourshed, Monjur, 2011. "The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh," Applied Energy, Elsevier, vol. 88(11), pages 3737-3746.
    5. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    6. Özkan, Derya B. & Onan, Cenk, 2011. "Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1331-1342, April.
    7. Mehmet Balcilar & Daberechi Chikezie Ekwueme & Hakki Ciftci, 2023. "Assessing the Effects of Natural Resource Extraction on Carbon Emissions and Energy Consumption in Sub-Saharan Africa: A STIRPAT Model Approach," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    8. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    9. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    10. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    11. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    12. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    13. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    14. Nan, Shijing & Huo, Yuchen & You, Wanhai & Guo, Yawei, 2022. "Globalization spatial spillover effects and carbon emissions: What is the role of economic complexity?," Energy Economics, Elsevier, vol. 112(C).
    15. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    16. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    17. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    18. Song, Yanwu & Zhang, Jinrui & Song, Yingkang & Fan, Xinran & Zhu, Yuqing & Zhang, Chen, 2020. "Can industry-university-research collaborative innovation efficiency reduce carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    19. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    20. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.