IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225003895.html
   My bibliography  Save this article

A comprehensive investigation of thermal characteristics of beam-blocks, concrete slab, U-boot slab and waffle slab flooring systems of buildings through CFD simulations

Author

Listed:
  • Solghar, Alireza Arab
  • Rabiei, Milad
  • Forghani, Amir Hossein

Abstract

In this study, the effect of different types and structures of ceilings in buildings was investigated through computational fluid dynamics simulation. The studied ceilings included concrete and various types of clay, concrete blocks, simple and perforated polystyrene ceilings, prefabricated ceilings, waffle slabs, and U-boot slabs, which were studied and analyzed for spans of 6 and 8 m. For simulating fluid flow and heat transfer, the Computational Fluid Dynamics method based on the Control Volume approach was utilized. Heat transfer within air cavities occurs through free convection and radiation, while heat transfer in the solid parts of the walls is conducted through conduction. Thermal modeling of the ceilings was investigated separately for winter (heat flow upwards) and summer (heat flow downwards). Three-dimensional natural heat transfer was considered a steady laminar flow with incompressible density in the cavities. To assess the thermal performance of different ceilings, equivalent conduction coefficient, decrement factor, and time lag were studied. Ultimately, the best type of ceiling in terms of heat transfer and thermal-mass efficiency was introduced. The results revealed that the best thermal performance was achieved by concrete roofs with polystyrene blocks, while waffle-slabs roofs had the worst thermal performance.

Suggested Citation

  • Solghar, Alireza Arab & Rabiei, Milad & Forghani, Amir Hossein, 2025. "A comprehensive investigation of thermal characteristics of beam-blocks, concrete slab, U-boot slab and waffle slab flooring systems of buildings through CFD simulations," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225003895
    DOI: 10.1016/j.energy.2025.134747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dabiri, Soroush & Mehrpooya, Mehdi & Nezhad, Erfan Ghavami, 2018. "Latent and sensible heat analysis of PCM incorporated in a brick for cold and hot climatic conditions, utilizing computational fluid dynamics," Energy, Elsevier, vol. 159(C), pages 160-171.
    2. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    3. Antar, Mohamed A., 2010. "Thermal radiation role in conjugate heat transfer across a multiple-cavity building block," Energy, Elsevier, vol. 35(8), pages 3508-3516.
    4. Saxena, Rajat & Rakshit, Dibakar & Kaushik, S.C., 2020. "Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings," Renewable Energy, Elsevier, vol. 149(C), pages 587-599.
    5. Kočí, Jan & Maděra, Jiří & Černý, Robert, 2015. "A fast computational approach for the determination of thermal properties of hollow bricks in energy-related calculations," Energy, Elsevier, vol. 83(C), pages 749-755.
    6. Ozalp, C. & Saydam, D.B. & Çerçi, K.N. & Hürdoğan, E. & Moran, H., 2019. "Evaluation of a sample building with different type building elements in an energetic and environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    8. Lu, Shilei & Xu, Bowen & Tang, Xiaolei, 2020. "Experimental study on double pipe PCM floor heating system under different operation strategies," Renewable Energy, Elsevier, vol. 145(C), pages 1280-1291.
    9. Calautit, John Kaiser & Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2013. "Comparison between evaporative cooling and a heat pipe assisted thermal loop for a commercial wind tower in hot and dry climatic conditions," Applied Energy, Elsevier, vol. 101(C), pages 740-755.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    3. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    4. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.
    5. O’Connor, Dominic & Calautit, John Kaiser S. & Hughes, Ben Richard, 2016. "A review of heat recovery technology for passive ventilation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1481-1493.
    6. Kočí, Václav & Kočí, Jan & Maděra, Jiří & Černý, Robert, 2016. "Contribution of waste products in single-layer ceramic building envelopes to overall energy savings," Energy, Elsevier, vol. 111(C), pages 947-955.
    7. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    8. Qiao, Xu & Kong, Xiangfei & Jiang, Lina, 2025. "Comprehensive analysis of thermal performance & optimization over a dual-PCM ceiling-floor heating/cooling system," Renewable Energy, Elsevier, vol. 242(C).
    9. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    10. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    12. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    13. Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2011. "Passive heat and moisture removal from a natural vented enclosure with a massive wall," Energy, Elsevier, vol. 36(5), pages 2867-2882.
    14. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    15. Koharu Tani & Sayaka Kindaichi & Keita Kawasaki & Daisaku Nishina, 2025. "Application of a Phase-Change Material Heat Exchanger to Improve the Efficiency of Heat Pumps at Partial Loads," Energies, MDPI, vol. 18(14), pages 1-18, July.
    16. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    17. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    18. Kirim Lee & Jihoon Seong & Youkyung Han & Won Hee Lee, 2020. "Evaluation of Applicability of Various Color Space Techniques of UAV Images for Evaluating Cool Roof Performance," Energies, MDPI, vol. 13(16), pages 1-12, August.
    19. Gigliola Ausiello & Luca Di Girolamo & Antonio Marano, 2019. "Sustainable Requalification: Hemp, Raw Earth, Sun, and Wind for Energy Strategies in a Case Study in Naples, Italy," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
    20. Singh, Aditya Kumar & Rathore, Pushpendra Kumar Singh & Sharma, R.K. & Gupta, Naveen Kumar & Kumar, Rajan, 2023. "Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings," Energy, Elsevier, vol. 263(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225003895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.