IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v60y2013icp215-221.html
   My bibliography  Save this article

Australian power: Can renewable technologies change the dominant industry view?

Author

Listed:
  • Molyneaux, Lynette
  • Froome, Craig
  • Wagner, Liam
  • Foster, John

Abstract

With carbon dioxide the major contributor to anthropogenic climate change, being required to reduce the carbon emissions from burning coal for electricity presents a systemic shock to Australian power. The Australian government is committed to the development of its coal seam gas resources for export to lucrative world markets and to transition domestic power generation to greater resilience by moving away from a reliance on coal to lower-emissions intensive gas. Using a commercially available modelling package, PLEXOS, we model what a transition to gas fired generation in the year 2035 would deliver and compare that to a transition to power from renewable technologies. The results indicate that a transition to gas fired generation reduces emissions only marginally and that wholesale prices will be higher than the renewable energy option.

Suggested Citation

  • Molyneaux, Lynette & Froome, Craig & Wagner, Liam & Foster, John, 2013. "Australian power: Can renewable technologies change the dominant industry view?," Renewable Energy, Elsevier, vol. 60(C), pages 215-221.
  • Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:215-221 DOI: 10.1016/j.renene.2013.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113002541
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    2. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    3. Lynette Molyneaux & Liam Wagner & Craig Froome & John Foster, 2012. "Resilience and electricity systems: a comparative analysis," Energy Economics and Management Group Working Papers 15, School of Economics, University of Queensland, Australia.
    4. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    5. Molyneaux, Lynette & Wagner, Liam & Froome, Craig & Foster, John, 2012. "Resilience and electricity systems: A comparative analysis," Energy Policy, Elsevier, vol. 47(C), pages 188-201.
    6. World Bank, 2011. "World Development Indicators 2011," World Bank Publications, The World Bank, number 2315.
    7. Lynette Molyneaux & Craig Froome & Liam Wagner, 2012. "Where is Australian Power headed in 2035?," Energy Economics and Management Group Working Papers 10-2012, School of Economics, University of Queensland, Australia.
    8. Molyneaux, Lynette & Wagner, Liam & Froome, Craig & Foster, John, 2012. "Resilience and electricity systems: A comparative analysis," Energy Policy, Elsevier, pages 188-201.
    9. Molyneaux, Lynette & Froome, Craig & Wagner, Liam & Foster, John, 2013. "Australian power: Can renewable technologies change the dominant industry view?," Renewable Energy, Elsevier, pages 215-221.
    10. William E., Lilley & Luke J., Reedman & Liam D., Wagner & Colin F., Alie & Anthony R., Szatow, 2012. "An economic evaluation of the potential for distributed energy in Australia," Energy Policy, Elsevier, vol. 51(C), pages 277-289.
    11. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    12. Krozer, Yoram, 2013. "Cost and benefit of renewable energy in the European Union," Renewable Energy, Elsevier, pages 68-73.
    13. Lynette Molyneaux & Craig Froome & Liam Wagner & John Foster, 2012. "Australian Power: Can renewable technologies change the dominant industry view?," Energy Economics and Management Group Working Papers 13-2012, School of Economics, University of Queensland, Australia.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molyneaux, Lynette & Froome, Craig & Wagner, Liam & Foster, John, 2013. "Australian power: Can renewable technologies change the dominant industry view?," Renewable Energy, Elsevier, pages 215-221.
    2. Burke, Kerry B., 2014. "The reliability of distributed solar in critical peak demand: A capital value assessment," Renewable Energy, Elsevier, pages 103-110.
    3. Gui, Emi Minghui & Diesendorf, Mark & MacGill, Iain, 2017. "Distributed energy infrastructure paradigm: Community microgrids in a new institutional economics context," Renewable and Sustainable Energy Reviews, Elsevier, pages 1355-1365.
    4. Lynette Molyneaux & Craig Froome & Liam Wagner, 2012. "Where is Australian Power headed in 2035?," Energy Economics and Management Group Working Papers 10-2012, School of Economics, University of Queensland, Australia.
    5. Riesz, Jenny & Vithayasrichareon, Peerapat & MacGill, Iain, 2015. "Assessing “gas transition” pathways to low carbon electricity – An Australian case study," Applied Energy, Elsevier, pages 794-804.
    6. Byrnes, Liam & Brown, Colin, 2015. "Australia’s renewable energy policy: the case for intervention," MPRA Paper 64977, University Library of Munich, Germany.
    7. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain F., 2015. "Using renewables to hedge against future electricity industry uncertainties—An Australian case study," Energy Policy, Elsevier, vol. 76(C), pages 43-56.
    8. Foster, John & Wagner, Liam & Liebman, Ariel, 2015. "Modelling the Electricity and Natural Gas Sectors for the Future Grid: Developing Co-Optimisation Platforms for Market Redesign," MPRA Paper 70114, University Library of Munich, Germany.
    9. Foster, John & Wagner, Liam & Liebman, Ariel, 2017. "Economic and investment models for future grids: Final Report Project 3," MPRA Paper 78866, University Library of Munich, Germany.
    10. Wagner, Liam & Molyneaux, Lynette & Foster, John, 2014. "The magnitude of the impact of a shift from coal to gas under a Carbon Price," Energy Policy, Elsevier, vol. 66(C), pages 280-291.
    11. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, pages 196-204.
    12. Lynette Molyneaux & Craig Froome & Liam Wagner & John Foster, 2012. "Australian Power: Can renewable technologies change the dominant industry view?," Energy Economics and Management Group Working Papers 13-2012, School of Economics, University of Queensland, Australia.

    More about this item

    Keywords

    Resilience; Electricity; Renewable energy; Distributed generation;

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:60:y:2013:i:c:p:215-221. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.