IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v44y2012icp463-468.html
   My bibliography  Save this article

Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction

Author

Listed:
  • Liu, Xiao
  • Gao, Xingbao
  • Wang, Wei
  • Zheng, Lei
  • Zhou, Yingjun
  • Sun, Yifei

Abstract

A pilot-scale anaerobic co-digestion research study is presented to elucidate the feasibility of developing anaerobic digestion (AD) as an effective disposal method for municipal biomass waste (MBW) in China, focusing on biogas production and greenhouse gas (GHG) reduction. Food waste, fruit–vegetable waste, and dewatered sewage sludge were co-digested in a continuous stirred-tank reactor for biogas production. Stable operation was achieved with a high biogas production rate of 4.25m3(m3d)−1 at organic loading rate of 6.0kgVS(m3d)−1 and hydraulic retention time of 20d. A total of 16.5% of lipids content was beneficial to the biogas production of the feedstock without inhibition to anaerobic digestion. Compared with the landfill baseline, GHG reduction is an important environmental benefit from MBW digestion. Therefore, anaerobic co-digestion is a promising alternative solution for MBW because it contributes significantly to the sound management of municipal solid waste in China.

Suggested Citation

  • Liu, Xiao & Gao, Xingbao & Wang, Wei & Zheng, Lei & Zhou, Yingjun & Sun, Yifei, 2012. "Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction," Renewable Energy, Elsevier, vol. 44(C), pages 463-468.
  • Handle: RePEc:eee:renene:v:44:y:2012:i:c:p:463-468
    DOI: 10.1016/j.renene.2012.01.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112001036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.01.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvarez, René & Lidén, Gunnar, 2008. "Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste," Renewable Energy, Elsevier, vol. 33(4), pages 726-734.
    2. Yao, Runming & Li, Baizhan & Steemers, Koen, 2005. "Energy policy and standard for built environment in China," Renewable Energy, Elsevier, vol. 30(13), pages 1973-1988.
    3. Zhu, Zhenwei & Hsueh, Michael K. & He, Qiang, 2011. "Enhancing biomethanation of municipal waste sludge with grease trap waste as a co-substrate," Renewable Energy, Elsevier, vol. 36(6), pages 1802-1807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    2. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    3. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    4. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Di Maria, Francesco & Micale, Caterina, 2017. "Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an Italian province," Energy, Elsevier, vol. 136(C), pages 110-116.
    6. Martí-Herrero, J. & Soria-Castellón, G. & Diaz-de-Basurto, A. & Alvarez, R. & Chemisana, D., 2019. "Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste," Renewable Energy, Elsevier, vol. 133(C), pages 676-684.
    7. Di Maria, Francesco & Micale, Caterina & Sordi, Alessio, 2014. "Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC," Renewable Energy, Elsevier, vol. 66(C), pages 461-467.
    8. Sen, Biswarup & Aravind, J. & Kanmani, P. & Lay, Chyi-How, 2016. "State of the art and future concept of food waste fermentation to bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 547-557.
    9. Chien Bong, Cassendra Phun & Ho, Wai Shin & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Chin Siong & Peng Tan, William Soo & Lee, Chew Tin, 2017. "Review on the renewable energy and solid waste management policies towards biogas development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 988-998.
    10. Cavinato, Cristina & Bolzonella, David & Pavan, Paolo & Fatone, Francesco & Cecchi, Franco, 2013. "Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors," Renewable Energy, Elsevier, vol. 55(C), pages 260-265.
    11. Ali, Ghaffar & Nitivattananon, Vilas & Abbas, Sawaid & Sabir, Muazzam, 2012. "Green waste to biogas: Renewable energy possibilities for Thailand's green markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5423-5429.
    12. De Clercq, Djavan & Wen, Zongguo & Fei, Fan, 2017. "Economic performance evaluation of bio-waste treatment technology at the facility level," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 178-184.
    13. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Di Maria, Francesco & Micale, Caterina, 2015. "The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility," Renewable Energy, Elsevier, vol. 81(C), pages 770-778.
    15. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    16. De Clercq, Djavan & Wen, Zongguo & Gottfried, Oliver & Schmidt, Franziska & Fei, Fan, 2017. "A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 204-221.
    17. Tiwary, A. & Williams, I.D. & Pant, D.C. & Kishore, V.V.N., 2015. "Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 883-901.
    18. Montecchio, D. & Braguglia, C.M. & Gallipoli, A. & Gianico, A., 2017. "A model-based tool for reactor configuration of thermophilic biogas plants fed with Waste Activated Sludge," Renewable Energy, Elsevier, vol. 113(C), pages 411-419.
    19. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.
    2. Liu, Wenling & Zhang, Jinyun & Bluemling, Bettina & Mol, Arthur P.J. & Wang, Can, 2015. "Public participation in energy saving retrofitting of residential buildings in China," Applied Energy, Elsevier, vol. 147(C), pages 287-296.
    3. Gulhane, Madhuri & Pandit, Prabhakar & Khardenavis, Anshuman & Singh, Dharmesh & Purohit, Hemant, 2017. "Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor," Renewable Energy, Elsevier, vol. 101(C), pages 59-66.
    4. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.
    5. Richerzhagen, Carmen & Scholz, Imme, 2008. "China's Capacities for Mitigating Climate Change," World Development, Elsevier, vol. 36(2), pages 308-324, February.
    6. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2010. "The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model," Energy Policy, Elsevier, vol. 38(11), pages 6597-6603, November.
    7. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    8. Li, Huan & Carrión-Flores, Carmen E., 2017. "An analysis of the ENERGY STAR® program in Alachua County, Florida," Ecological Economics, Elsevier, vol. 131(C), pages 98-108.
    9. Latifi, Pooria & Karrabi, Mohsen & Danesh, Shahnaz, 2019. "Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 288-296.
    10. Bai, Lujian & Yang, Liu & Song, Bing & Liu, Na, 2020. "A new approach to develop a climate classification for building energy efficiency addressing Chinese climate characteristics," Energy, Elsevier, vol. 195(C).
    11. Li, Baizhan & Yao, Runming, 2009. "Urbanisation and its impact on building energy consumption and efficiency in China," Renewable Energy, Elsevier, vol. 34(9), pages 1994-1998.
    12. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    13. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    14. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    15. Wan, Kevin K.W. & Tang, H.L. & Yang, Liu & Lam, Joseph C., 2008. "An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks," Energy, Elsevier, vol. 33(7), pages 1115-1127.
    16. Zhang, Pengchong & Lin, Che-Jen & Liu, James & Pongprueksa, Pruek & Evers, Simon A. & Hart, Peter, 2014. "Biogas production from brown grease using a pilot-scale high-rate anaerobic digester," Renewable Energy, Elsevier, vol. 68(C), pages 304-313.
    17. Ahmed Salih Mohammed & Panagiotis G. Asteris & Mohammadreza Koopialipoor & Dimitrios E. Alexakis & Minas E. Lemonis & Danial Jahed Armaghani, 2021. "Stacking Ensemble Tree Models to Predict Energy Performance in Residential Buildings," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    18. Zhen, Li & Lin, D.M. & Shu, H.W. & Jiang, Shuang & Zhu, Y.X., 2007. "District cooling and heating with seawater as heat source and sink in Dalian, China," Renewable Energy, Elsevier, vol. 32(15), pages 2603-2616.
    19. Tasnia Hassan Nazifa & Noori M. Cata Saady & Carlos Bazan & Sohrab Zendehboudi & Adnan Aftab & Talib M. Albayati, 2021. "Anaerobic Digestion of Blood from Slaughtered Livestock: A Review," Energies, MDPI, vol. 14(18), pages 1-26, September.
    20. Zhang, Lin, 2013. "Model projections and policy reviews for energy saving in China's service sector," Energy Policy, Elsevier, vol. 59(C), pages 312-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:44:y:2012:i:c:p:463-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.