IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v116y2017icp178-184.html
   My bibliography  Save this article

Economic performance evaluation of bio-waste treatment technology at the facility level

Author

Listed:
  • De Clercq, Djavan
  • Wen, Zongguo
  • Fei, Fan

Abstract

The objective of this paper is to investigate the economic performance of a major Chinese biowaste treatment pilot project in Hainan province. Our methodology involved comprehensive on-site survey to collect economic performance data. Performance modelling tools used included net present value (NPV) analysis, internal rate of return, sensitivity analysis and uncertainty analysis based on Monte Carlo methods The results show that (1) weak economic performance in one of China’s most eminent biowaste projects: NPV was found to be negative at RMB – 115,311,390; and (2) sensitivity analysis showed that natural gas prices would need to be subsidized by 2.19 RMB/Nm3 for the project to break-even; (3) Monte Carlo analysis showed that the project had a probability of 86% to lose money. The policy implications for China are important: (1) capital and operating costs should be minimized in subsequent pilot project iterations; (2) subsidies towards the sale price of biomethane should be increased; and (3) the outputs produced by biowaste treatment plants should be further diversified. These policy implications are especially pertinent given that the surveyed case study is one of the newest and most advanced projects of its kind in China, and may serve as a model for the further development of biogas plants across China. For that reason, it is imperative that the identified economic issues are resolved quickly.

Suggested Citation

  • De Clercq, Djavan & Wen, Zongguo & Fei, Fan, 2017. "Economic performance evaluation of bio-waste treatment technology at the facility level," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 178-184.
  • Handle: RePEc:eee:recore:v:116:y:2017:i:c:p:178-184
    DOI: 10.1016/j.resconrec.2016.09.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916302798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.09.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    2. Velazquez Abad, Anthony & Cherrett, Tom & Holdsworth, Peter, 2015. "Waste-to-fuel opportunities for British quick service restaurants: A case study," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 239-253.
    3. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    4. Piippo, Sari & Juntunen, Arttu & Kurppa, Sirpa & Pongrácz, Eva, 2014. "The use of bio-waste to revegetate eroded land areas in Ylläs, Northern Finland: Toward a zero waste perspective of tourism in the Finnish Lapland," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 9-22.
    5. Liu, Xiao & Gao, Xingbao & Wang, Wei & Zheng, Lei & Zhou, Yingjun & Sun, Yifei, 2012. "Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction," Renewable Energy, Elsevier, vol. 44(C), pages 463-468.
    6. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Liu & Qian Zhang & Xiaowen Kang & Jiaqi Hou & Tao Luo & Yi Zhang, 2022. "Household Food Waste to Biogas in Västerås, Sweden: A Comprehensive Case Study of Waste Valorization," Sustainability, MDPI, vol. 14(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Clercq, Djavan & Wen, Zongguo & Gottfried, Oliver & Schmidt, Franziska & Fei, Fan, 2017. "A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 204-221.
    2. Roozbeh Feiz & Jonas Ammenberg & Annika Björn & Yufang Guo & Magnus Karlsson & Yonghui Liu & Yuxian Liu & Laura Shizue Moriga Masuda & Alex Enrich-Prast & Harald Rohracher & Kristina Trygg & Sepehr Sh, 2019. "Biogas Potential for Improved Sustainability in Guangzhou, China—A Study Focusing on Food Waste on Xiaoguwei Island," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    3. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    4. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    5. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    6. Baruah, Debendra Chandra & Enweremadu, Christopher Chintua, 2019. "Prospects of decentralized renewable energy to improve energy access: A resource-inventory-based analysis of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 328-341.
    7. Li, Heng & Chen, Zheng & Fu, Dun & Wang, Yuanpeng & Zheng, Yanmei & Li, Qingbiao, 2020. "Improved ADM1 for modelling C, N, P fates in anaerobic digestion process of pig manure and optimization approaches to biogas production," Renewable Energy, Elsevier, vol. 146(C), pages 2330-2336.
    8. Ali, Ghaffar & Nitivattananon, Vilas & Abbas, Sawaid & Sabir, Muazzam, 2012. "Green waste to biogas: Renewable energy possibilities for Thailand's green markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5423-5429.
    9. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    10. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    11. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    12. Jiabo Chen & Jun Lu, 2014. "Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    13. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    14. De Clercq, Djavan & Wen, Zongguo & Caicedo, Luis & Cao, Xin & Fan, Fei & Xu, Ruifei, 2017. "Application of DEA and statistical inference to model the determinants of biomethane production efficiency: A case study in south China," Applied Energy, Elsevier, vol. 205(C), pages 1231-1243.
    15. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    16. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    17. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    18. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    19. He, Guizhen & Bluemling, Bettina & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Comparing centralized and decentralized bio-energy systems in rural China," Energy Policy, Elsevier, vol. 63(C), pages 34-43.
    20. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:116:y:2017:i:c:p:178-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.