IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v150y2021ics136403212100770x.html
   My bibliography  Save this article

Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization

Author

Listed:
  • Tian, Hailin
  • Wang, Xiaonan
  • Lim, Ee Yang
  • Lee, Jonathan T.E.
  • Ee, Alvin W.L.
  • Zhang, Jingxin
  • Tong, Yen Wah

Abstract

Anaerobic digestion (AD) has been identified as an efficient food waste disposal technology by many researchers. However, a holistic environmental investigation of different AD configurations integrated with different downstream biogas utilization has never been reported. This study, taking Singapore as an example, compared the sustainability of business-as-usual technology, i.e., incineration, to centralized and decentralized AD with different biogas applications: electricity generation, cooking fuel, and transportation fuel. The results showed that AD scenarios were generally preferable compared to incineration since environmental benefits were observed in seven to fourteen categories for AD scenarios but only four categories for incineration. The decentralized AD with biogas as cooking fuel (Sc_DADcook) achieved the highest environmental benefit in global warming potential (GWP, −238.4 kg CO2 eq./FU) and fossil fuel depletion potential (FFP, −93.5 kg oil eq./FU) among all the analysed scenarios, followed by centralized AD with biogas as transportation fuel (Sc_CADtran). The sensitivity analysis of the different electricity substitution showed that Sc_DADcook and Sc_CADtran lost their advantages when coal-dominated electricity was used, while biogas for electricity generation became favourable with higher environmental savings up to 280% and 150% in GWP and FFP, respectively. Besides, maximizing the methane yield and minimizing the FW collection radius were also identified as important measures to improve the overall environmental performance. Finally, the scenario analysis of different biogas upgrading technologies demonstrated the GWP advantage by membrane separation and benefits in other categories by high pressure water scrubbing. However, biological upgrading needs further optimization particularly of the H2 source associated emissions.

Suggested Citation

  • Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:rensus:v:150:y:2021:i:c:s136403212100770x
    DOI: 10.1016/j.rser.2021.111489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100770X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    2. Khoshnevisan, Benyamin & Tabatabaei, Meisam & Tsapekos, Panagiotis & Rafiee, Shahin & Aghbashlo, Mortaza & Lindeneg, Susanne & Angelidaki, Irini, 2020. "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    4. Tsapekos, P. & Khoshnevisan, B. & Alvarado-Morales, M. & Symeonidis, A. & Kougias, P.G. & Angelidaki, Irini, 2019. "Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    6. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Kavitha Shanmugam & Anju Baroth & Sachin Nande & Dalia M. M. Yacout & Mats Tysklind & Venkata K. K. Upadhyayula, 2019. "Social Cost Benefit Analysis of Operating Compressed Biomethane (CBM) Transit Buses in Cities of Developing Nations: A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    8. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    10. Feiz, Roozbeh & Johansson, Maria & Lindkvist, Emma & Moestedt, Jan & Påledal, Sören Nilsson & Svensson, Niclas, 2020. "Key performance indicators for biogas production—methodological insights on the life-cycle analysis of biogas production from source-separated food waste," Energy, Elsevier, vol. 200(C).
    11. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    12. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    13. Hager, Tiffany J. & Morawicki, Ruben, 2013. "Energy consumption during cooking in the residential sector of developed nations: A review," Food Policy, Elsevier, vol. 40(C), pages 54-63.
    14. Aisha Al-Rumaihi & Gordon McKay & Hamish R. Mackey & Tareq Al-Ansari, 2020. "Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    15. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Eftychia Ntostoglou & Dilip Khatiwada & Viktoria Martin, 2021. "The Potential Contribution of Decentralized Anaerobic Digestion towards Urban Biowaste Recovery Systems: A Scoping Review," Sustainability, MDPI, vol. 13(23), pages 1-21, December.
    3. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    4. Lisandra Rocha-Meneses & Mario Luna-delRisco & Carlos Arrieta González & Sebastián Villegas Moncada & Andrés Moreno & Jorge Sierra-Del Rio & Luis E. Castillo-Meza, 2023. "An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia," Energies, MDPI, vol. 16(16), pages 1-20, August.
    5. Maneechotiros Rotthong & Masaki Takaoka & Kazuyuki Oshita & Pichaya Rachdawong & Shabbir H. Gheewala & Trakarn Prapaspongsa, 2022. "Life Cycle Assessment of Integrated Municipal Organic Waste Management Systems in Thailand," Sustainability, MDPI, vol. 15(1), pages 1-31, December.
    6. Deng, Yawen & Ng Tsan Sheng, Adam & Xu, Jiuping, 2023. "Authority-enterprise equilibrium based mixed subsidy mechanism for the value-added treatment of food waste," Energy, Elsevier, vol. 282(C).
    7. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    8. Amina Mohamed Ali & Md Alam Zahangir & Fatouma Mohamed Abdoul-Latif & Mohammed Saedi Jami & Jalludin Mohamed & Tarik Ainane, 2023. "Hydrolysis of Food Waste with Immobilized Biofilm as a Pretreatment Method for the Enhancement of Biogas Production," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    9. Roshni Paul & Alla Silkina & Lynsey Melville & Sri Suhartini & Michael Sulu, 2023. "Optimisation of Ultrasound Pretreatment of Microalgal Biomass for Effective Biogas Production through Anaerobic Digestion Process," Energies, MDPI, vol. 16(1), pages 1-13, January.
    10. Oliveira, Helena Rodrigues & Kozlowsky-Suzuki, Betina & Björn, Annika & Shakeri Yekta, Sepehr & Caetano, Cristiane Fonseca & Pinheiro, Érika Flávia Machado & Marotta, Humberto & Bassin, João Paulo & O, 2024. "Biogas potential of biowaste: A case study in the state of Rio de Janeiro, Brazil," Renewable Energy, Elsevier, vol. 221(C).
    11. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
    12. Zhang, Qifan & Wang, Shiya & Sun, Hangyu & Arhin, Samuel Gyebi & Yang, Ziyi & Liu, Guangqing & Tong, Yen Wah & Tian, Hailin & Wang, Wen, 2024. "Anaerobic digestion + pyrolysis integrated system for food waste treatment achieving both environmental and economic benefits," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    3. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    4. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Ireneu Mendes & Pedro Rocha & Alexandra Aragão, 2023. "Advancing Sustainable Bio-Waste Management through Law and Policy: How Co-Creation Can Help Pursue Fair Environmental Public Policies in the European Context," Social Sciences, MDPI, vol. 12(10), pages 1-15, October.
    6. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Khoshnevisan, Benyamin & He, Li & Xu, Mingyi & Valverde-Pérez, Borja & Sillman, Jani & Mitraka, Georgia-Christina & Kougias, Panagiotis G. & Zhang, Yifeng & Yan, Shuiping & Ji, Long & Carbajales-Dale,, 2022. "From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    10. Ziyao Fan & Huijuan Dong & Yong Geng & Minoru Fujii, 2023. "Life cycle cost–benefit efficiency of food waste treatment technologies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4935-4956, June.
    11. Chipo Shonhiwa & Yolanda Mapantsela & Golden Makaka & Patrick Mukumba & Ngwarai Shambira, 2023. "Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review," Energies, MDPI, vol. 16(14), pages 1-20, July.
    12. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    14. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Woon, Kok Sin & Phuang, Zhen Xin & Lin, Zuchao & Lee, Chew Tin, 2021. "A novel food waste management framework combining optical sorting system and anaerobic digestion: A case study in Malaysia," Energy, Elsevier, vol. 232(C).
    16. Xu, H. & Lin, W.Y. & Dal Magro, F. & Li, T & Py, X. & Romagnoli, A., 2019. "Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 324-337.
    17. Olkis, Christopher & Brandani, Stefano & Santori, Giulio, 2019. "Design and experimental study of a small scale adsorption desalinator," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Quek, Augustine & Ee, Alvin & Ng, Adam & Wah, Tong Yen, 2018. "Challenges in Environmental Sustainability of renewable energy options in Singapore," Energy Policy, Elsevier, vol. 122(C), pages 388-394.
    19. Tsapekos, Panagiotis & Khoshnevisan, Benyamin & Alvarado-Morales, Merlin & Zhu, Xinyu & Pan, Junting & Tian, Hailin & Angelidaki, Irini, 2021. "Upcycling the anaerobic digestion streams in a bioeconomy approach: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:150:y:2021:i:c:s136403212100770x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.