IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic39.html
   My bibliography  Save this article

Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time

Author

Listed:
  • Tsapekos, P.
  • Khoshnevisan, B.
  • Alvarado-Morales, M.
  • Symeonidis, A.
  • Kougias, P.G.
  • Angelidaki, Irini

Abstract

Biogas production from anaerobic digestion of grass was evaluated in this study taking into account two harvesting machines, a Disc-mower and an Excoriator, under diverse operating conditions. In addition, the application of generated biogas either in a Combined Heat and Power (CHP) plant for thermal and electrical energy production or as transportation fuel after upgrading (BGU) process was evaluated. Consequential Life Cycle Assessment (CLCA) with long term marginal data was employed. Lab-scale data as well as those obtained from the ecoinvent database were used to compile life cycle inventory data. The system boundary of the present study covered harvesting operation of grass, baling, transportation of bales, anaerobic digestion, use of digestate on farmlands, and downstream processes for biogas usage. Additionally, the system boundary was expanded to take into account the effect of substituting grass with straw in animal feeds. The results demonstrated that the environmental performance of grass-based biogas plants were highly dependent on selected downstream strategies. Furthermore, it was evident that mono-digestion of grass would not guarantee a long-term sustainable renewable energy system. Based on the results obtained, Excoriator at driving speed of 7.5 km/ha had the best environmental performance in all damage categories, i.e., “Human health”, “Ecosystem quality”, “Climate change”, and “Resources”. CHP had a greater environmental performance than water scrubbing BGU for the downstream strategies taken into account. The results from the sensitivity analysis proved that a specific methane yield lower than 329 mLCH4/gVS cannot ensure the achievement of an eco-friendly energy system from grass-based biogas plants.

Suggested Citation

  • Tsapekos, P. & Khoshnevisan, B. & Alvarado-Morales, M. & Symeonidis, A. & Kougias, P.G. & Angelidaki, Irini, 2019. "Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:39
    DOI: 10.1016/j.apenergy.2019.113467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsapekos, P. & Kougias, P.G. & Egelund, H. & Larsen, U. & Pedersen, J. & Trénel, P. & Angelidaki, I., 2017. "Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses," Renewable Energy, Elsevier, vol. 111(C), pages 914-921.
    2. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    3. Hakawati, Rawan & Smyth, Beatrice M. & McCullough, Geoffrey & De Rosa, Fabio & Rooney, David, 2017. "What is the most energy efficient route for biogas utilization: Heat, electricity or transport?," Applied Energy, Elsevier, vol. 206(C), pages 1076-1087.
    4. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    5. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    6. Wall, D.M. & Allen, E. & O'Shea, R. & O'Kiely, P. & Murphy, J.D., 2016. "Investigating two-phase digestion of grass silage for demand-driven biogas applications: Effect of particle size and rumen fluid addition," Renewable Energy, Elsevier, vol. 86(C), pages 1215-1223.
    7. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    8. Khoshnevisan, Benyamin & Shafiei, Marzieh & Rajaeifar, Mohammad Ali & Tabatabaei, Meisam, 2016. "Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach," Energy, Elsevier, vol. 114(C), pages 935-950.
    9. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    10. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    11. Cong, Rong-Gang & Caro, Dario & Thomsen, Marianne, 2017. "Is it beneficial to use biogas in the Danish transport sector?–An environmental-economic analysis," MPRA Paper 112291, University Library of Munich, Germany.
    12. Patrizio, P. & Leduc, S. & Chinese, D. & Dotzauer, E. & Kraxner, F., 2015. "Biomethane as transport fuel – A comparison with other biogas utilization pathways in northern Italy," Applied Energy, Elsevier, vol. 157(C), pages 25-34.
    13. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Zhou, Jialiang & Zhang, Yuanhui & Khoshnevisan, Benyamin & Duan, Na, 2021. "Meta-analysis of anaerobic co-digestion of livestock manure in last decade: Identification of synergistic effect and optimization synergy range," Applied Energy, Elsevier, vol. 282(PA).
    6. Ma, Shuaishuai & Wang, Hongliang & Li, Longrui & Gu, Xiaohui & Zhu, Wanbin, 2021. "Enhanced biomethane production from corn straw by a novel anaerobic digestion strategy with mechanochemical pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Zhang, Yizhen & Jiang, Yan & Wang, Shun & Wang, Zhongzhong & Liu, Yanchen & Hu, Zhenhu & Zhan, Xinmin, 2021. "Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Magdalena Muradin & Joanna Kulczycka, 2020. "The Identification of Hotspots in the Bioenergy Production Chain," Energies, MDPI, vol. 13(21), pages 1-17, November.
    9. Khoshnevisan, Benyamin & He, Li & Xu, Mingyi & Valverde-Pérez, Borja & Sillman, Jani & Mitraka, Georgia-Christina & Kougias, Panagiotis G. & Zhang, Yifeng & Yan, Shuiping & Ji, Long & Carbajales-Dale,, 2022. "From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Tsapekos, Panagiotis & Khoshnevisan, Benyamin & Alvarado-Morales, Merlin & Zhu, Xinyu & Pan, Junting & Tian, Hailin & Angelidaki, Irini, 2021. "Upcycling the anaerobic digestion streams in a bioeconomy approach: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Linda Mezule & Baiba Strazdina & Brigita Dalecka & Eriks Skripsts & Talis Juhna, 2021. "Natural Grasslands as Lignocellulosic Biofuel Resources: Factors Affecting Fermentable Sugar Production," Energies, MDPI, vol. 14(5), pages 1-12, February.
    12. Wei En Tan & Peng Yen Liew & Lian See Tan & Kok Sin Woon & Nor Erniza Mohammad Rozali & Wai Shin Ho & Jamian NorRuwaida, 2022. "Life Cycle Assessment and Techno-Economic Analysis for Anaerobic Digestion as Cow Manure Management System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    13. Khoshnevisan, Benyamin & Tabatabaei, Meisam & Tsapekos, Panagiotis & Rafiee, Shahin & Aghbashlo, Mortaza & Lindeneg, Susanne & Angelidaki, Irini, 2020. "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Luo, Tao & Khoshnevisan, Benyamin & Pan, Junting & Ge, Yihong & Mei, Zili & Xue, Jian & Fu, Yanran & Liu, Hongbin, 2020. "How exothermic characteristics of rice straw during anaerobic digestion affects net energy production," Energy, Elsevier, vol. 212(C).
    15. Constantin Aurelian Ionescu & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin & Liliana Paschia & Nicoleta Luminita Gudanescu Nicolau & Gabriel Cucui & Dan Marius Coman & Sorina Geanina Stanescu, 2019. "The Analysis of the Economic Effects on the Greening and Recovery of the Sludge Waste Resulting from the Biogas Production Activity," Sustainability, MDPI, vol. 11(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    2. McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
    3. Hakawati, Rawan & Smyth, Beatrice M. & McCullough, Geoffrey & De Rosa, Fabio & Rooney, David, 2017. "What is the most energy efficient route for biogas utilization: Heat, electricity or transport?," Applied Energy, Elsevier, vol. 206(C), pages 1076-1087.
    4. Hamelin, Lorie & Møller, Henrik Bjarne & Jørgensen, Uffe, 2021. "Harnessing the full potential of biomethane towards tomorrow's bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    6. Yusuf, Noor & Almomani, Fares, 2023. "Recent advances in biogas purifying technologies: Process design and economic considerations," Energy, Elsevier, vol. 265(C).
    7. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    8. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    10. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    11. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Obal, Thalita Monteiro & de Souza, Jovani Taveira & de Jesus, Rômulo Henrique Gomes & de Francisco, Antonio Carlos, 2023. "Biogascluster: A clustering algorithm to identify potential partnerships between agribusiness properties," Renewable Energy, Elsevier, vol. 206(C), pages 982-993.
    13. Krystian Butlewski, 2022. "Concept for Biomass and Organic Waste Refinery Plants Based on the Locally Available Organic Materials in Rural Areas of Poland," Energies, MDPI, vol. 15(9), pages 1-19, May.
    14. O'Connor, S. & Ehimen, E. & Pillai, S.C. & Black, A. & Tormey, D. & Bartlett, J., 2021. "Biogas production from small-scale anaerobic digestion plants on European farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    16. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    17. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    18. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    19. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    20. Alessandro Chiumenti & Andrea Pezzuolo & Davide Boscaro & Francesco da Borso, 2019. "Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield," Energies, MDPI, vol. 12(17), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.