IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032504.html
   My bibliography  Save this article

Anaerobic digestion + pyrolysis integrated system for food waste treatment achieving both environmental and economic benefits

Author

Listed:
  • Zhang, Qifan
  • Wang, Shiya
  • Sun, Hangyu
  • Arhin, Samuel Gyebi
  • Yang, Ziyi
  • Liu, Guangqing
  • Tong, Yen Wah
  • Tian, Hailin
  • Wang, Wen

Abstract

Waste-to-energy technologies for food waste (FW) and digestate treatment face environmental and economic barriers including pollutant emission and practical application concerns. This study investigated environmental impacts and economic feasibility of four scenarios to dispose 1 ton FW by life cycle assessment: Scenario A: mesophilic anaerobic digestion (AD) with digestate for biofertilizer; Scenario B: thermophilic AD with digestate for biofertilizer; Scenario C: mesophilic AD combining with digestate for 400 °C pyrolysis; and Scenario D: thermophilic AD combining with digestate for 700 °C pyrolysis. Scenario D was recommended for FW treatment especially for climate change, fine particulate matter formation, and Fossil depletion credits. Electrical recovery was identified as the most contributing and sensitive factor based on uncertainty and sensitivity analysis. Optimizing electrical generation efficiency from 39 % to 44 % benefited all 17 environmental categories through scenario analysis. Furthermore, Scenario D showed an economic advantage over the other scenarios, which was attributed to digestate post-treatment by 700 °C pyrolysis. This study provided a comprehensive reference for FW and digestate management.

Suggested Citation

  • Zhang, Qifan & Wang, Shiya & Sun, Hangyu & Arhin, Samuel Gyebi & Yang, Ziyi & Liu, Guangqing & Tong, Yen Wah & Tian, Hailin & Wang, Wen, 2024. "Anaerobic digestion + pyrolysis integrated system for food waste treatment achieving both environmental and economic benefits," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032504
    DOI: 10.1016/j.energy.2023.129856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yasar, Abdullah & Rasheed, Rizwan & Tabinda, Amtul Bari & Tahir, Aleena & Sarwar, Friha, 2017. "Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 364-371.
    2. Yang, Ziyi & Wang, Wen & He, Yanfeng & Zhang, Ruihong & Liu, Guangqing, 2018. "Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 125(C), pages 915-925.
    3. Barampouti, E.M. & Mai, S. & Malamis, D. & Moustakas, K. & Loizidou, M., 2020. "Exploring technological alternatives of nutrient recovery from digestate as a secondary resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    6. Yao, Yao & Huang, Gordon & An, Chunjiang & Chen, Xiujuan & Zhang, Peng & Xin, Xiaying & Jian Shen, & Agnew, Joy, 2020. "Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
    3. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    4. Amit Kumar Jaglan & Venkata Ravi Sankar Cheela & Mansi Vinaik & Brajesh Dubey, 2022. "Environmental Impact Evaluation of University Integrated Waste Management System in India Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    5. Jaime Jaimes-Estévez & German Zafra & Jaime Martí-Herrero & Guillermo Pelaz & Antonio Morán & Alejandra Puentes & Christian Gomez & Liliana del Pilar Castro & Humberto Escalante Hernández, 2020. "Psychrophilic Full Scale Tubular Digester Operating over Eight Years: Complete Performance Evaluation and Microbiological Population," Energies, MDPI, vol. 14(1), pages 1-17, December.
    6. Alessandro Abbà & Marta Domini & Marco Baldi & Roberta Pedrazzani & Giorgio Bertanza, 2023. "Ammonia Recovery from Livestock Manure Digestate through an Air-Bubble Stripping Reactor: Evaluation of Performance and Energy Balance," Energies, MDPI, vol. 16(4), pages 1-15, February.
    7. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    8. Ingrao, Carlo & Bacenetti, Jacopo & Adamczyk, Janusz & Ferrante, Valentina & Messineo, Antonio & Huisingh, Donald, 2019. "Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments," Renewable Energy, Elsevier, vol. 136(C), pages 296-307.
    9. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    10. Ren, Hourui & Liu, Bin & Zhang, Zirui & Li, Fuxin & Pan, Ke & Zhou, Zhongli & Xu, Xiaoshuang, 2022. "A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty," Applied Energy, Elsevier, vol. 326(C).
    11. Ao, Tianjie & Chen, Lin & Zhou, Pan & Liu, Xiaofeng & Li, Dong, 2021. "The role of oxidation-reduction potential as an early warning indicator, and a microbial instability mechanism in a pilot-scale anaerobic mesophilic digestion of chicken manure," Renewable Energy, Elsevier, vol. 179(C), pages 223-232.
    12. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Deng, Liangwei, 2022. "Alleviation of ammonia inhibition in dry anaerobic digestion of swine manure," Energy, Elsevier, vol. 253(C).
    13. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Samer, Mohamed & Abdelaziz, Salwa & Refai, Mohamed & Abdelsalam, Essam, 2020. "Techno-economic assessment of dry fermentation in household biogas units through co-digestion of manure and agricultural crop residues in Egypt," Renewable Energy, Elsevier, vol. 149(C), pages 226-234.
    15. Deng, Yawen & Ng Tsan Sheng, Adam & Xu, Jiuping, 2023. "Authority-enterprise equilibrium based mixed subsidy mechanism for the value-added treatment of food waste," Energy, Elsevier, vol. 282(C).
    16. Amina Mohamed Ali & Md Alam Zahangir & Fatouma Mohamed Abdoul-Latif & Mohammed Saedi Jami & Jalludin Mohamed & Tarik Ainane, 2023. "Hydrolysis of Food Waste with Immobilized Biofilm as a Pretreatment Method for the Enhancement of Biogas Production," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    17. Chunjiang An & Mengfan Cai & Christophe Guy, 2020. "Rural Sustainable Environmental Management," Sustainability, MDPI, vol. 12(16), pages 1-5, August.
    18. Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Andrea Zanellati & Federica Spina & Luca Rollé & Giovanna Cristina Varese & Elio Dinuccio, 2020. "Fungal Pretreatments on Non-Sterile Solid Digestate to Enhance Methane Yield and the Sustainability of Anaerobic Digestion," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    20. Yu, Lu & Yuan, Haiping & Zhu, Nanwen & Shen, Yanwen, 2021. "How does choline change methanogenesis pathway in anaerobic digestion of waste activated sludge?," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.